M.Sc. Maschinenbau
Modulhandbuch

Stand 16.01.2018
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschlussarbeit</td>
<td>5</td>
</tr>
<tr>
<td>Abtragende Fertigungstechnik</td>
<td>6</td>
</tr>
<tr>
<td>Angewandte Tribologie im Maschinenbau</td>
<td>8</td>
</tr>
<tr>
<td>Automatisierungstechnik I</td>
<td>10</td>
</tr>
<tr>
<td>Automatisierungstechnik II</td>
<td>11</td>
</tr>
<tr>
<td>Betrieb von Produktionsanlagen</td>
<td>12</td>
</tr>
<tr>
<td>Betriebs- und Systemverhalten</td>
<td>13</td>
</tr>
<tr>
<td>Betriebsfestigkeit II</td>
<td>15</td>
</tr>
<tr>
<td>Betriebsfestigkeit III</td>
<td>16</td>
</tr>
<tr>
<td>Elektronik II</td>
<td>17</td>
</tr>
<tr>
<td>Elemente des Maschinen- und Anlagenbaus</td>
<td>18</td>
</tr>
<tr>
<td>Embedded Systems Engineering I</td>
<td>19</td>
</tr>
<tr>
<td>Embedded Systems Engineering II</td>
<td>21</td>
</tr>
<tr>
<td>Entwurf digitaler Schaltungen</td>
<td>22</td>
</tr>
<tr>
<td>Fabrik- und Anlagenplanung</td>
<td>23</td>
</tr>
<tr>
<td>Fahrzeugmechatronik</td>
<td>24</td>
</tr>
<tr>
<td>Funk- und Mikrosensorik</td>
<td>26</td>
</tr>
<tr>
<td>Gestaltung und Berechnung von Schweißkonstruktionen</td>
<td>28</td>
</tr>
<tr>
<td>Grundlagen der Kolbenmaschinen</td>
<td>29</td>
</tr>
<tr>
<td>Grundlagen der Nachrichtentechnik</td>
<td>30</td>
</tr>
<tr>
<td>Ingenieurmathematik IV</td>
<td>31</td>
</tr>
<tr>
<td>Innovative nichtmetallische Werkstoffe und Bauweisen</td>
<td>32</td>
</tr>
<tr>
<td>Leistungsmechatronische Systeme</td>
<td>34</td>
</tr>
<tr>
<td>Messtechnik II</td>
<td>36</td>
</tr>
<tr>
<td>Methode der finiten Elemente</td>
<td>38</td>
</tr>
<tr>
<td>Nichtlineare Regelungstechnik</td>
<td>40</td>
</tr>
<tr>
<td>Ölhydraulik</td>
<td>41</td>
</tr>
<tr>
<td>Pneumatik</td>
<td>43</td>
</tr>
<tr>
<td>Polymerwerkstoffe I</td>
<td>45</td>
</tr>
<tr>
<td>Praktika</td>
<td>47</td>
</tr>
<tr>
<td>Fachpraktikum Rechnergestützte Betriebsfestigkeitsanalyse</td>
<td>48</td>
</tr>
<tr>
<td>Höhere FEM-Simulation mit ANSYS</td>
<td>49</td>
</tr>
<tr>
<td>Integriertes Produktdatenmanagement (PDM)</td>
<td>50</td>
</tr>
<tr>
<td>Praktischer Betriebsfestigkeitsnachweis nach FKM-Richtlinie</td>
<td>51</td>
</tr>
<tr>
<td>Praktikum Schweißtechnik und trennende Fertigungsverfahren</td>
<td>52</td>
</tr>
<tr>
<td>Praktikum Tribologie</td>
<td>53</td>
</tr>
<tr>
<td>Praktikum Verbrennungskraftmaschinen</td>
<td>54</td>
</tr>
<tr>
<td>Messtechnisches Labor</td>
<td>55</td>
</tr>
<tr>
<td>Course</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Fachpraktikum Digitale Fabrik</td>
<td>56</td>
</tr>
<tr>
<td>Praktikum Prozessautomatisierung</td>
<td>57</td>
</tr>
<tr>
<td>Praktikum zur Hochspannungstechnik</td>
<td>58</td>
</tr>
<tr>
<td>Regelungstechnisches Praktikum</td>
<td>59</td>
</tr>
<tr>
<td>Projektaufgabe</td>
<td>60</td>
</tr>
<tr>
<td>Rechnerintegrierte Fertigung</td>
<td>61</td>
</tr>
<tr>
<td>Regelungstechnik II</td>
<td>62</td>
</tr>
<tr>
<td>Regelungstechnik III</td>
<td>63</td>
</tr>
<tr>
<td>Ressourceneffiziente Produktentwicklung</td>
<td>65</td>
</tr>
<tr>
<td>Schweißtechnik I</td>
<td>66</td>
</tr>
<tr>
<td>Schweißtechnik II</td>
<td>68</td>
</tr>
<tr>
<td>Schwerpunkt</td>
<td>70</td>
</tr>
<tr>
<td>Antriebstrang im Automobil</td>
<td>72</td>
</tr>
<tr>
<td>Automobilproduktion heute - vom Einzelteil zur fertigen Karosse</td>
<td>73</td>
</tr>
<tr>
<td>Automotive - Management und Technik in der Fahrzeugentwicklung</td>
<td>74</td>
</tr>
<tr>
<td>Apparative Anlagentechnik I</td>
<td>75</td>
</tr>
<tr>
<td>Apparative Anlagentechnik II</td>
<td>76</td>
</tr>
<tr>
<td>Basic principles of molecular dynamics</td>
<td>77</td>
</tr>
<tr>
<td>Einführung in den gewerblichen Rechtsschutz, insbesondere Patentrecht</td>
<td>78</td>
</tr>
<tr>
<td>Einführung in die Fügetechnologie des Löten</td>
<td>79</td>
</tr>
<tr>
<td>Energiewandlungsmaschinen II</td>
<td>80</td>
</tr>
<tr>
<td>Fahrzeuginformatik</td>
<td>81</td>
</tr>
<tr>
<td>Gießgerechte Bauteilkonzeption und Prozessplanung</td>
<td>82</td>
</tr>
<tr>
<td>Kontinuumsmechanik</td>
<td>83</td>
</tr>
<tr>
<td>Laser- und Radarmesstechnik</td>
<td>85</td>
</tr>
<tr>
<td>Nachrichtensystemtechnik</td>
<td>87</td>
</tr>
<tr>
<td>Numerische Strömungsmechanik</td>
<td>88</td>
</tr>
<tr>
<td>Polymerwerkstoffe II – Duroplastische Systeme</td>
<td>89</td>
</tr>
<tr>
<td>Prozess-Automatisierung von CFK-Strukturen in der Luftfahrtindustrie I</td>
<td>90</td>
</tr>
<tr>
<td>Prozess-Automatisierung von CFK-Strukturen in der Luftfahrtindustrie II</td>
<td>91</td>
</tr>
<tr>
<td>Qualitätsmanagement I</td>
<td>92</td>
</tr>
<tr>
<td>Rheologie</td>
<td>93</td>
</tr>
<tr>
<td>Schweißtechnische Fertigung 1</td>
<td>95</td>
</tr>
<tr>
<td>Schweißtechnische Fertigung 2</td>
<td>96</td>
</tr>
<tr>
<td>Seiltriebe</td>
<td>97</td>
</tr>
<tr>
<td>Seminar Produktfindung / Produktplanung</td>
<td>98</td>
</tr>
<tr>
<td>Spanende Fertigungstechnik 1</td>
<td>99</td>
</tr>
<tr>
<td>Statistische Methoden im Ingenieurwesen</td>
<td>100</td>
</tr>
<tr>
<td>Strömungsmechanik II</td>
<td>101</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Abschlussarbeit</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Masterarbeit + Präsentation</td>
</tr>
<tr>
<td>Semester:</td>
<td>4.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dozenten aus der Lehreinheit Maschinenbau</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Ausarbeitung 20 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>900 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>30</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Nachweis von mindestens 75 CP</td>
</tr>
</tbody>
</table>

Lernziele

Nachdem die Studierenden das Modul erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:

- innerhalb einer vorgegebenen Frist ein interdisziplinäres Problem erhöhter Schwierigkeit aus der gewählten Studienrichtung zu analysieren,
- geeignete Modelle und Methoden zur Problemlösung zu identifizieren, auszuwählen, eventuell anzupassen und zu nutzen
- und das Ergebnis in angemessener Form schriftlich darzustellen, zu präsentieren und zu bewerten
- die einzelnen Arbeitsschritte eigenverantwortlich zu planen, zu organisieren und durchzuführen.

Kompetenzen

Kenntnisse und Fähigkeit, Forschungs- und Entwicklungsaufgaben selbständig nach ingenieurwissenschaftlichen Methoden zu bearbeiten, zu dokumentieren und Arbeitsergebnisse darzustellen

Inhalt:

Die Studierenden erarbeiten anhand der Master-Arbeit eine wissenschaftliche Fragestellung innerhalb eines Forschungsprojektes der TU Clausthal selbständig und legen die Erkenntnisse in einer Ausarbeitung dar und präsentieren diese.

Studien-Prüfungsleistungen:

Schriftliche Ausarbeitung, Präsentation der Masterarbeit von ca. 30 Minuten (mit anschließender Diskussion) im Rahmen eines Seminars vor Fachvertretern

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Abtragende Fertigungstechnik</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Abtragende Fertigungstechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. V. Wesling, Dr.-Ing. R. Reiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Abtragende Fertigungsverfahren</td>
</tr>
<tr>
<td></td>
<td>- Abtragen durch Gas</td>
</tr>
<tr>
<td></td>
<td>- Funkenerosives Abtragen</td>
</tr>
<tr>
<td></td>
<td>- Abtragen durch Laserstrahl</td>
</tr>
<tr>
<td></td>
<td>- Abtragen durch Elektronenstrahl</td>
</tr>
<tr>
<td></td>
<td>- Ätzabtragen</td>
</tr>
<tr>
<td></td>
<td>- Thermisch-chemisches Entgraten</td>
</tr>
<tr>
<td></td>
<td>- Chemisch-thermisches Abtragen</td>
</tr>
<tr>
<td></td>
<td>- Elektrochemisches Abtragen</td>
</tr>
<tr>
<td></td>
<td>- Metallätzen</td>
</tr>
<tr>
<td></td>
<td>- Trennen mit Hochdruckwasserstrahl</td>
</tr>
<tr>
<td></td>
<td>- Ultraschallschwinglappen</td>
</tr>
<tr>
<td></td>
<td>- Spanen mit geometrisch unbestimmter Schneide</td>
</tr>
<tr>
<td></td>
<td>- Schleifen</td>
</tr>
<tr>
<td></td>
<td>- Honen</td>
</tr>
<tr>
<td></td>
<td>- Läppen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Mündliche Prüfung (45 min, Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint Präsentation</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>König: Fertigungsverfahren – Band 1, „Drehen, Fräsen, Bohren“. VDI Verlag, Düsseldorf 1990</td>
<td></td>
</tr>
<tr>
<td>Spur: Keramikbearbeitung – Schleifen, Honen, Läppen, Abtrag, Carl Hanser Verlag, München / Wien 1989</td>
<td></td>
</tr>
<tr>
<td>Berger: Elektrisch abtragende Fertigungsverfahren, VDI Verlag, Düsseldorf 1977</td>
<td></td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Angewandte Tribologie im Maschinenbau</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Angewandte Tribologie im Maschinenbau</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. H. Schwarze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Kenntnisse aus Tribologie I</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Nach dem Bestehen der Prüfung sollen HörerInnen dieser Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1. die Grundgleichungen zur mathematischen Beschreibung von</td>
</tr>
<tr>
<td></td>
<td>Schmierungsproblemen in der Tribologie formulieren können</td>
</tr>
<tr>
<td></td>
<td>2. die grundlegenden Möglichkeiten zur numerischen Behandlung</td>
</tr>
<tr>
<td></td>
<td>konzentrierter Tribokontakte erläutern können.</td>
</tr>
<tr>
<td></td>
<td>3. Finite Volumen Methoden in der Tribologie ausführen können.</td>
</tr>
<tr>
<td></td>
<td>4. die mathematischen Methoden an ausgeführten Beispielen im Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>(Zahnrad, Wälzlager, Gleitlager, Nocken-Stössel-System) einordnen können.</td>
</tr>
<tr>
<td></td>
<td>5. die Grundbegriffe und Möglichkeiten bzw. Modellierungstechniken in der</td>
</tr>
<tr>
<td></td>
<td>Schmierstoffrheologie begreifen können.</td>
</tr>
<tr>
<td></td>
<td>6. die mathematische Beschreibung technisch rauer Oberflächen erklären</td>
</tr>
<tr>
<td></td>
<td>können.</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder</td>
</tr>
<tr>
<td></td>
<td>Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Mathematische Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Einführung in die numerischen Berechnungsverfahren</td>
</tr>
<tr>
<td></td>
<td>- Finite-Elemente-Methode</td>
</tr>
<tr>
<td></td>
<td>- Finite-Differenzen-Methode</td>
</tr>
<tr>
<td></td>
<td>- Finite-Volumen-Methode</td>
</tr>
<tr>
<td></td>
<td>2. Radialgleitlager, Axialgleitlager</td>
</tr>
<tr>
<td></td>
<td>- Reynolds-Differenzialgleichung</td>
</tr>
<tr>
<td></td>
<td>- Eindimensionale Lösung (analytisch, numerisch)</td>
</tr>
<tr>
<td></td>
<td>- Umsetzung der zweidimensionalen Lösung</td>
</tr>
<tr>
<td></td>
<td>3. Tribokontakt Zahnrad</td>
</tr>
<tr>
<td></td>
<td>- Nährungsformel für die Minimalschmierspaltweite</td>
</tr>
<tr>
<td></td>
<td>- Kinematische Verhältnisse am Zahnkontakt</td>
</tr>
<tr>
<td></td>
<td>- Belastung am Zahnkontakt</td>
</tr>
<tr>
<td></td>
<td>- instationäre TEHD am Zahnkontakt</td>
</tr>
<tr>
<td></td>
<td>4. Tribokontakt Wälzlager</td>
</tr>
<tr>
<td></td>
<td>- Nährungsformel für die Minimalspaltweite</td>
</tr>
<tr>
<td></td>
<td>- Kinematische Verhältnisse am Wälzkontakt</td>
</tr>
<tr>
<td></td>
<td>- Belastung der Wälzkörper in der Kontaktzone</td>
</tr>
<tr>
<td></td>
<td>- instationäre TEHD – Berechnung</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5. Modellierungstechniken bei technisch rauen Oberflächen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Beeinflussung der Hydrodynamik bei rauen Oberflächen</td>
</tr>
<tr>
<td></td>
<td>- deterministische Strömungssimulation</td>
</tr>
<tr>
<td>6. Tribologische Messtechnik</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Experimentelle Untersuchung tribologischer Kontakte</td>
</tr>
<tr>
<td></td>
<td>- Bestimmung der dynamischen Koeffizienten eines Radialgleitlagers</td>
</tr>
<tr>
<td>7. Der Schmierstoff als Maschinenelement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- typische Schmierstoffeigenschaften und ihre rheologischen Charakteristiken</td>
</tr>
<tr>
<td></td>
<td>- Bestimmung der thermophysikalischen Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>- Modellierungstechniken in der Schmierstoffrheologie</td>
</tr>
<tr>
<td>8. Rotor-Lager-Systeme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Unwucht</td>
</tr>
<tr>
<td></td>
<td>- Lavalrotor</td>
</tr>
<tr>
<td></td>
<td>- kritische Drehzahlen und Rotordynamik</td>
</tr>
</tbody>
</table>

| Studien-Prüfungsleistungen: | mündliche Prüfung (30 min.) |
| Medienformen: | Power Point |
| Literatur: | Skript
Wisniewski Elastohydrodynamische Schmierung, Band 9, 2000
(ISBN 3-8169-1745-3)
Lang-Steinhilper Gleitlager, Springer Verlag
(ISBN 3-540-08678-1)
Klamann Schmierstoffe und verwandte Produkte
(ISBN 3-527-25966-X) |
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. C. Siemers</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Studienrichtung Automatisierungstechnik: Pflicht Studienrichtung Mechatronik: Wahlpflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Ingenieurmathematik I, II, Technische Mechanik III und Grundlagen der Automatisierungstechnik</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Studienprüfungsleistungen:</td>
<td>Klausur (60 min) ab einer Teilnehmerzahl von 15, bei weniger als 15 Teilnehmern mündliche Prüfung (30 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>PDF-Scripte, Tafel und Beamer/Folien, PC-Pool für die Einführung und die Übungen mit Matlab/Simulink</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Automatisierungstechnik II</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>Automatisierungstechnik II</td>
</tr>
<tr>
<td>/ Teilmodul</td>
<td>Automatisierungstechnik II</td>
</tr>
<tr>
<td>Semester:</td>
<td>3.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. C. Siemers</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Studienrichtung Automatisierungstechnik: Pflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Einführung</td>
</tr>
<tr>
<td></td>
<td>2. Kommunikationsstrukturen in verteilten Automatisierungssystemen</td>
</tr>
<tr>
<td></td>
<td>3. Definition und Eigenschaften Verteilter Systeme</td>
</tr>
<tr>
<td></td>
<td>4. Interprozesskommunikation</td>
</tr>
<tr>
<td></td>
<td>5. Strukturierung verteilter Automatisierungssysteme</td>
</tr>
<tr>
<td></td>
<td>6. Bussysteme in der Automatisierungstechnik</td>
</tr>
<tr>
<td></td>
<td>7. Sicherheitstechnik in der Automatisierungstechnik</td>
</tr>
<tr>
<td></td>
<td>8. Operationsprinzipien und Klassifizierungen im Configurable Computing</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Klausur (60 min) ab einer Teilnehmerzahl von 15, bei weniger als 15 Teilnehmern mündliche Prüfung (30 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>PDF-Script, Tafel und Beamer/Folien</td>
</tr>
<tr>
<td></td>
<td>Übungen am PC und an Steuerungen</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Betrieb von Produktionsanlagen</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Betrieb von Produktionsanlagen</td>
</tr>
<tr>
<td>Teilmodul:</td>
<td>1.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. U. Bracht</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum:</td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>3 SWS (Vorlesung 2 SWS + Übung 1 SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Σ 150 h (42 h Präsenzstudium + 108 h Selbststudium)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Lernziele: | Nach erfolgreichem Abschluss dieser Veranstaltung können die Studierenden
| | • die Grundlagen des Betriebes von Produktionsanlagen erläutern und anwenden,
| | • wesentliche Aspekte der Fertigungssteuerung erklären,
| | • die verschiedenen Arten und Aufgaben des Qualitätsmanagements erklären und abgrenzen,
| | • die Grundlagen eines ganzheitlichen Produktionssystems erschließen.
| | Durch eine aktive Teilnahme an dem angebotenen Planspiel zur Optimierung
| | der betrieblichen Strukturen und Abläufe werden die erlernten Grundlagen
| | gefestigt sowie die soziale Kompetenz der Studierenden durch Gruppenarbeit
| | gefördert. |
| Kompetenzen: | Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder
| | Erweiterung ingenieurwissenschaftlicher Themen |
| Inhalt: | • General Management
| | • Produktions- und Logistikstrategien
| | • Business Reengineering
| | • Prozessorientierung
| | • Total Quality Management
| | • Qualitätsmanagementsysteme und Zertifizierung
| | • Mitarbeiterorientierung
| | • Moderne logistikorientierte Werke |
| Studien-Prüfungsleistungen: | Klausur (60 min) |
| Medienformen: | • Powerpoint-Präsentation
| | • Beispielfilme über Beamer
| | • Skripte |
| Literatur: | In Vorlesungsmodulen angegeben |
| Sonstiges: | Im Rahmen der Übung wird ein logistikorientiertes Unternehmensplanspiel
| | angeboten, in dem grundlegende Kenntnisse zu innerbetrieblichen Abläufen
<p>| | erlangt werden können. |</p>
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Betriebs- und Systemverhalten</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Betriebs- und Systemverhalten</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Esderts</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studienrichtung Allgemeiner Maschinenbau: Wahlpflicht Studienrichtung Automatisierungstechnik: Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Lernziele

Die teilnehmenden Student(inn)en sollen:
- dynamische Systeme kennenlernen und deren Verhalten theoretisch (rechnerisch) beschreiben und untersuchen können
- ein dynamisches System / reales Bauteil experimentell analysieren und dessen Verhalten interpretieren können
- technische Systeme modellieren, deren Verhalten simulieren und die Ergebnisse auf die Realität übertragen können
- den Umgang mit Softwareanwendungen aus dem Bereich der dynamischen Simulation (MATLAB; ANSYS und SIMPACK) üben

Spezifische Grundlagen zur Analyse und Synthese von Produkten und Systemen verstehen und anhand selbst erstellter Modelle technischer Systeme mit Softwaretools und im Team experimentell vertiefen.

Die Einsetzbarkeit der vorgestellten und eingeübten Fähigkeiten und Methoden in anderen ingenieurwissenschaftlichen Disziplinen erkennen und hierin übertragen und erweitern können.

Kompetenzen

Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:

- Zielsetzung und Grundlagen
- Methoden der Systembeschreibung
- Methoden der Systemuntersuchung
- Elementare Übertragungsglieder
- Grundlagen der Simulation
- Experimentelle Systemanalyse

Studien-

Mündliche Prüfung
<table>
<thead>
<tr>
<th>Prüfungsleistungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Skriptum, PowerPoint-Folien, Tafel, Software: MATLAB, Ansys, Simpack</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Strukturdynamik, Band 1, Diskrete Systeme, R. Gasch, Springer, 1987</td>
</tr>
<tr>
<td></td>
<td>Systemdynamik und Simulation, M. Gipser, Teubner, 1999</td>
</tr>
<tr>
<td></td>
<td>Systemtheorie 1 – Allgemeine Grundlagen, R. Unbehauen, Oldenbourg, 2002</td>
</tr>
<tr>
<td></td>
<td>Modellbildung und Simulation dyn. Systeme, H. Scherf, Oldenbourg, 2003</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Betriebsfestigkeit II</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Betriebsfestigkeit II</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Esderts</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Empfohlen Betriebsfestigkeit I</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Örtliches Konzept</td>
</tr>
<tr>
<td></td>
<td>2. Bruchmechanik</td>
</tr>
<tr>
<td></td>
<td>3. Einflussgrößen auf die Beanspruchbarkeit bei veränderlicher Amplitude</td>
</tr>
<tr>
<td></td>
<td>4. Dauerfeste und betriebsfeste Auslegung</td>
</tr>
<tr>
<td></td>
<td>5. Schwingfestigkeit von Schweißverbindungen</td>
</tr>
<tr>
<td></td>
<td>6. Verbesserung der Schwingfestigkeit</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>mündliche Prüfung (30 Minuten, Einzelprüfung)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Skript, Tafel, Powerpoint</td>
</tr>
<tr>
<td></td>
<td>Haibach, E.: Betriebsfestigkeit - Verfahren und Daten zur Bauteilberechnung. VDI-Verlag GmbH, Düsseldorf, 1989</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Betriebsfestigkeit III</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Betriebsfestigkeit III</td>
</tr>
<tr>
<td>Semester:</td>
<td>3.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Esderts</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Betriebsfestigkeit I und II</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Durchführung und Auswertung von Versuchen ermöglichen, Leichtbaukonstruktionen hinsichtlich ihrer betriebsfesten Auslegung bewerten. Kennenlernen von unterschiedlichen Aspekten der Betriebsfestigkeit</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
</tbody>
</table>
| **Inhalt:** | 1. Größeneinfluss
2. Mehrachsigkeit
3. Schwingfestigkeit gefügter Konstruktionen
4. Schwingfestigkeit von Maschinenelementen
5. Betriebsfestigkeit und Automobil
6. Niedrigwechselfastigkeits / Low Cycle Fatigue
7. Leichtbau
8. Versuchstechnik
9. Messung von Betriebsbeanspruchungen
10. Lebensdauersoftware
11. Zuverlässigkeit |
<p>| Studien-Prüfungsleistungen: | mündliche Prüfung |
| Medienformen: | Tafel, Powerpoint, Tutorien |</p>
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Elektronik II</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Elektronik II</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. G. Kemnitz</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studienrichtung Mechatronik: Pflicht Studienrichtung Automatisierungstechnik: Wahlpflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik, Elektronik I</td>
</tr>
</tbody>
</table>
| Lernziele | • Verstehen, erschließen, untersuchen der Funktionsweise von Schaltungen und Halbleiterbauteilen.
• Simulieren und entwerfen von Beispielschaltungen.
• Benutzen, erstellen und untersuchen gebräuchlicher Bauteilmodelle.
| Kompetenzen | Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen |
| Inhalt: | • Schaltungssimulation mit LT-Spice: Arbeitspunktanalyse, Kennlinienbestimmung, Transferfunktion, Simulation mit Bauteiltoleranzen, zeitdiskrete Simulation, Simulation im Frequenzbereich, Spektralanalyse, Rauschanalyse.
• Spice-Modelle: Dioden, Bipolartransistoren, FET, Thyristor, ...
• Schaltungsstechnik: Stromquellen, Verstärker, Oszillatoren, ... |
| Studien-Prüfungsleistungen: | Prüfung: Klausur (90 Minuten) >9 Teilnehmer, sonst mündliche Prüfung (30 Minuten Einzelprüfung)
Prüfungsvorleistung: Hausübungen |
<p>| Medienformen: | Tafel, Beamer, Laborarbeitsplätze |</p>
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Elemente des Maschinen- und Anlagenbaus</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Elemente des Maschinen- und Anlagenbaus</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Lohrengel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Nachdem die Studierenden das Modul erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:</td>
</tr>
<tr>
<td></td>
<td>• Anforderungen an Elemente des Maschinen- und Anlagenbaus zu analysieren und zu bewerten</td>
</tr>
<tr>
<td></td>
<td>• gültige Berechnungs- und Auslegungsvorschriften zu benennen und anzuwenden</td>
</tr>
<tr>
<td></td>
<td>• geeignete Elemente zur Konzeption, Konstruktion und zum Betrieb von moderner Apparate und Produktionsanlagen sytematisch auszuwählen und zu einem System zu konfigurieren</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Werkstoff- und Festigkeitsanforderungen, Pneumatische Antriebstechnik, Elektrische Antriebstechnik, Automatisierungskonzepte, Handhabungstechnik, Sicherheitstechnik, Konstruktions- und Planungsrichtlinien, Wartungskonzepte</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>In der Regel Klausur, Dauer 90 Minuten.</td>
</tr>
<tr>
<td></td>
<td>In Ausnahmefällen bei geringen Teilnehmerzahlen mündliche Prüfung, Dauer 30 Minuten</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorlesung mit Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript: Elemente des Maschinen und Anlagenbaus</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Embedded Systems Engineering I</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Embedded Systems Engineering I</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. C. Siemers</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Studienrichtung Automatisierungstechnik: Pflicht, Mechatronik: Wahlpflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/ Übung 4 SWS, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 56 h Präsenzstudium, 94 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden
- kennen den grundsätzlichen Aufbau von Mikroprozessoren (Von-Neumann-Modell)
- kennen den Aufbau und die Wirkungsweise von Speichertechnologien und -bausteinen
- kennen den Aufbau von Mikroprozessoren anhand der ATmega8-Architektur
- können einen Mikrorechner auf Basis der ATmega8-Architektur konzipieren
- kennen den Aufbau und den Ablauf von Maschinenbefehlen
- können Programme in C undAssembler für ATmega8-basierte Systeme entwerfen, programmieren und testen
- beherrschen Softwaretools zum Entwurf von Programmen für Mikrorechner.
- kennen Interrupt Requests und deren Einsatz in Mikroprozessor-basierten Systemen und können Programme in C undAssembler zur Verwaltung von Interrupt Requests entwerfen, programmieren und testen

Kompetenzen

Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:
1. Kurzeinführung zu Mikrocontrollern
2. Speichertechnologien und Speicherbausteine
3. Hardwaremodell ATmega8
4. Hardware/Software Interface ATmega8
5. Aufbau und Integration von peripheren Elementen

Studien-Prüfungsleistungen:
Klausur (60 min) ab einer Teilnehmerzahl von 15, bei weniger als 15 Teilnehmern mündliche Prüfung (30 min)

Medienformen:
Vorlesung, teilweise in seminaristischer Form, Tafel, Beamer

Literatur:
Skript zur Vorlesung wird angeboten
<table>
<thead>
<tr>
<th>2003/2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiengang:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
</tr>
<tr>
<td>Semester:</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
</tbody>
</table>
| **Literatur:** | Skript wird angeboten
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Entwurf digitaler Schaltungen</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Entwurf digitaler Schaltungen</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. G. Kemnitz</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 3 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 56 h Präsenzstudium, 94 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>
| **Lernziele:** | • Vergleichen des traditionellen Entwurfs mit dem modernen rechnergestützten Entwurf.
• Simulieren, entwerfen, optimieren und programmieren digitaler Schaltungen.
• Benutzen moderner Synthesewerkzeuge.
• Verstehen von Rechenwerken, Transistorschaltungen.
• Beurteilen von Aufwand, Geschwindigkeit und Stromverbrauch.
• Modellieren von Operationsabläufen. |
| **Kompetenzen:** | Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen |
| **Inhalt:** | • Einführung: Beispieltwürfe mit Standard- und programmierbaren Schaltkreisen.
• Handwerkszeug des Digitalentwurfs: Simulation, Synthese, Optimierung, Rechenwerke, Automaten, Zeitverhalten, Synchronizer.
• Vom Transistor zum Logikbaustein: Gatterentwurf, Signalverzögerung, Latches und Register, Blockspeicher, programmierbare Logikschaltkreise.
• VHDL-Beschreibungsmittel für komplexe Entwürfe: eigene Datentypen, Funktionen, Testein- und Testausgabe, Schrittfunktionen.
• Beispiele für komplexe Entwürfe: serielle Schnittstelle, CORDIC-Rechenwerk für trigonometrische Funktionen, FIR-Filter |
| **Studien-Prüfungsleistungen:** | Prüfung: Klausur (90 Minuten) >9 Teilnehmer, sonst mündliche Prüfung (30 Minuten Einzelprüfung) |
| **Prüfungsvorleistungen:** | Hausübungen |
| **Medienformen:** | Tafel, Beamer, Laborarbeitsplätze |
| **Literatur:** | • Günter Kemnitz: Technische Informatik 2: Entwurf digitaler Schaltungen. Springer, 2011
• Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann |
Studiengang: Master Maschinenbau

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Fabrik- und Anlagenplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Fabrik- und Anlagenplanung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. U. Bracht</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>3 SWS (Vorlesung 2 SWS + Übung 1 SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Σ 150 h (42 h Präsenzstudium + 108 h Selbststudium)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Lernziele:
Nach dem erfolgreichen Abschluss dieser Veranstaltung können die Studierenden
- Tendenzen der Fabrikentwicklung und Aufgaben der Fabrikplanung benennen,
- eine Standortplanung erstellen und beurteilen,
- alle Schritte einer ganzheitlichen Planung definieren und erläutern,
- Werkzeuge und Methoden der Digitalen Fabrik benennen und deren Nutzen darstellen.

Durch die Teilnahme an dem angebotenen Fabrikplanungs-Workshop werden die erlernten Grundlagen gefestigt sowie die soziale Kompetenz der Studierenden durch Gruppenarbeit gefördert.

Kompetenzen:
Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:
- Allgemeines zur Fabrikplanung
- Standort- und Fabrikstrukturplanung
- Generalbebauung
- Gebäudestruktur und -ausrüstung
- Datenaufnahme und -analyse
- Ver- und Entsorgungssysteme
- Strukturierung, Dimensionierung und Gestaltung von Produktionsbereichen
- Automatische Anordnungsverfahren zur Layoutoptimierung
- Arbeitstrukturierung und Fertigungsanlagen
- Montagesysteme und –anlagen
- Digitale Fabrik

Studien-Prüfungsleistungen:
Klausur (60 min)

Medienformen:
- Powerpoint-Präsentation
- Beispielfilme über Beamer
- Skripte

Literatur:
In Vorlesungsmodulen angegeben

Sonstiges:
Im Rahmen der Übung wird ein Fabrikplanungs-Workshop angeboten, in dem praktische Fabrikplanungsfälle im Vordergrund stehen.
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Fahrzeugmechatronik</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Fahrzeugmechatronik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. J. Rieling, Dr. Lange, Dr. Schmidt, Dr. Herzog, Lehrbeauftragte</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>-</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden begreifen das für die Behandlung mechatronischer Systeme im Fahrzeug notwendige theoretisch/mathematische und praktische Grundlagenwissen und wenden dieses (z.B. in den Übungen) zur Lösung von fachspezifischen Problemstellungen an.</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Teil 1 (Fahrzeugmechatronik I): Sensorik/Aktorik im Kraftfahrzeug</td>
</tr>
<tr>
<td></td>
<td>Einführung zur Sensorik im Automobil; Sensormessprinzipien: Fahrzeugsensooren; Einleitung zu den elektrischen Aktoren; Wirkungsprinzipien elektrischer Aktoren; Fahrzeugaktoren</td>
</tr>
<tr>
<td></td>
<td>Teil 2 (Fahrzeugmechatronik I): Elektronische Motorsteuerung</td>
</tr>
<tr>
<td></td>
<td>1. Komponenten moderner Verbrennungsmotoren</td>
</tr>
<tr>
<td></td>
<td>Grundlagen des Hubkolben-Verbrennungsmotors</td>
</tr>
<tr>
<td></td>
<td>Kraftstoffeinspritzung</td>
</tr>
<tr>
<td></td>
<td>Zündung</td>
</tr>
<tr>
<td></td>
<td>Luftsystem: Füllungssteuerung, Aufladung</td>
</tr>
<tr>
<td></td>
<td>Schadstoff-Emissionen und Wirkungsgrad</td>
</tr>
<tr>
<td></td>
<td>Abgasnachbehandlung</td>
</tr>
<tr>
<td></td>
<td>Antriebsstrang</td>
</tr>
<tr>
<td></td>
<td>2. Steuerungs- und Regelungsfunktionen</td>
</tr>
<tr>
<td></td>
<td>Mechatronisches System Motorsteuerung</td>
</tr>
<tr>
<td></td>
<td>Einspritzungsteuerung und Zumessung</td>
</tr>
<tr>
<td></td>
<td>Lambdaregelung</td>
</tr>
<tr>
<td></td>
<td>Laufhöchtempfindung</td>
</tr>
<tr>
<td></td>
<td>Klopfregelung</td>
</tr>
<tr>
<td></td>
<td>Momentenpfaud und Fahrverhalten: Ruckeldämpfung, Führungsformung</td>
</tr>
<tr>
<td></td>
<td>Leerlauf- und Arbeitsdrehzahlregeleung</td>
</tr>
<tr>
<td></td>
<td>Zylinderdruckgeführtes Motormanagement</td>
</tr>
<tr>
<td></td>
<td>Ladedrückregelung</td>
</tr>
<tr>
<td></td>
<td>3. Modellbildung & Simulation</td>
</tr>
<tr>
<td></td>
<td>Allgemeines zu Modellbildung & Simulation</td>
</tr>
<tr>
<td></td>
<td>Einführendes Beispiel: Regelstrecke Leerlaufregelung</td>
</tr>
<tr>
<td></td>
<td>Ladedruck- und Abgasrückführung- Regelstrecke</td>
</tr>
<tr>
<td>Modellierung des Gassystems</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>Verdichter- und Turbinen-Kennfelder</td>
<td></td>
</tr>
<tr>
<td>Simulink-Übung</td>
<td></td>
</tr>
</tbody>
</table>

Teil 3 (Fahrzeugmechatronik II): Getriebesteuerung/Triebstrangmanagement

Fahrleistungsberechnung im einfachen Gesamt-Fzg.-Modell

Doppelkupplungsgetriebe (DKG): Aufbau und Funktion, vier Grundtypen von Schaltungen: Umsetzung im DKG, Umsetzung im Verbund DKG/Motor;

Stufenautomatikgetriebe: Aufbau und Funktion, Schaltungen im Stufenautomaten, Management von Parallelhybrid-Antriebssträngen;

Modellbasiertes Antriebsstranghandling

Teil 4 Fahrzeugmechatronik II): Thermomanagement

Einfluss des Thermomanagements auf Schadstoffbildung und Wirkungsgrad;

Anforderungen der jeweiligen Teilgewerke: Kühlungsarten, Motor- und Zylinderkopfkühlung, Thermomanagement im Luftsystem; Wärmeübertrager: Grundlagen, Charakteristiken, Alterungserscheinungen und Kühlmittelzusammensetzung; Steuergerätfähige geschlossene Modellierung einfacher Kühlkreisläufe

Studien-Prüfungsleistungen:

Festlegung von Prüfungsform (Klausur oder mündliche Prüfung) und Dauer gemäß der geltenden Prüfungsordnung, in der Regel mündliche Prüfung mit einer Dauer von 30 min

Medienformen:

Tafelanschrieb, Skript, Folien, Hilfsblätter, z.T. Simulink-Modelle

Literatur:

U. Kiencke, L. Nielsen: Automotive Control Systems

Robert Bosch GmbH: Ottomotor-Management

H. Wallentowitz, K. Reif: Handbuch Kraftfahrzeug-Elektronik

H.-H. Braess, U. Seiffert: Handbuch Kraftfahrzeugtechnik

M. Mitschke, H. Wallentowitz: Dynamik der Kraftfahrzeuge

R. Mende: Radarsysteme zur automatischen Abstandsregelung in Automobilen

Robert Bosch GmbH: Fahrstabilisierungssysteme

R. Pischinger, M. Klell und T. Sams: Thermodynamik der Verbrennungskraftmaschine

K. Mollenhauer, H. Tschoke: Handbuch Dieselmotoren

VDI-Wärmeatlas
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Funk- und Mikrosensorik</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Funk- und Mikrosensorik n</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Christian Rembe</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Studienrichtung Automatisierungstechnik</td>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundlegende Kenntnisse zur Messtechnik und Signalübertragung.</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Nach erfolgreichem Abschluss des Moduls kennen die Studierenden 1) die Grundlagen der Funksensorik, 2) die Grundlagen der Mikrosystemtechnik und 3) die Möglichkeiten von photonischen integrierten Schaltkreisen PIC. 4) Sie kennen verschiedene Funksensorsnetze und Datenprotokolle. 5) Weiterhin kennen sie die die Verfahren des Energy Harvesting und RFID. Außerdem können die Studierenden 1) die richtigen Funksensornetze für ein Sensornetzwerk aussuchen. 2) Die Studierenden können außerdem eine einfache Kommunikation zwischen Funksensoren selber herstellen. 3) Sie können selbständig die Inhalte der Vorlesung mit Hilfe eines Lehrbuchs aufarbeiten. Des Weiteren wissen die Studierenden 1) wie Silizium-Mikrosensoren hergestellt werden. 2) Sie durchschauen, welche Möglichkeiten die Mikrosensorik für Fahrerassistenzsysteme bietet. 3) Sie erarbeiten sich die Lösungen der Übungsaufgaben selbständig. 4) Sie erarbeiten selbständig Matlab-Programme für die Übungen</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Folien, Tafel, Übungsaufgaben incl. Lösungen als Textdokumente, Matlabübungen</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Menz, J. Mohr, O. Paul, Mikrosystemtechnik für Ingenieure, Wiley-VCH Verlag, 2012</td>
</tr>
<tr>
<td></td>
<td>B.E.A. Saleh, M.C. Teich, Grundlagen der Photonik, Wiley-VCH Verlag, 2008</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Gestaltung und Berechnung von Schweißkonstruktionen</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Gestaltung und Berechnung von Schweißkonstruktionen</td>
</tr>
<tr>
<td>Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. V. Wesling</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
</tbody>
</table>
| Inhalt: | -Schweißverbindungen, Scheißnahtdarstellung
 -Grundlagen der Schweißnahtberechnung
 -Bruchmechanik
 -Verhalten geschweißter Verbindungen bei unterschiedlichen Beanspruchungen
 -Schweißkonstruktionen mit vorwiegend ruhender Beanspruchung
 -Verhalten geschweißter Verbindungen unter dynamischer Beanspruchung
 -Gestaltung dynamisch beanspruchter Schweißkonstruktionen |
<p>| Studien-Prüfungsleistungen: | Mündliche Prüfung (45 min, Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer) |
| Medienformen: | Powerpoint Präsentation |</p>
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Kolbenmaschinen</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Grundlagen der Kolbenmaschinen</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. H. Schwarze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflicht Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>kein</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur engen wissenschaftlichen Analyse und Synthese von Produkten und Systemen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Klausur (90 min.)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Nachrichtentechnik</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Grundlagen der Nachrichtentechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Bauer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht Studienrichtung Mechatronik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Empfohlen: Signale und Systeme</td>
</tr>
</tbody>
</table>

Lernziele: Durch den Besuch der Vorlesung lernen die Studierenden grundlegende Effekte und Phänomene kennen, die in nachrichtensystemischen Systemen auftreten sowie die zugrundeliegenden physikalischen Eigenschaften und können diese mathematisch beschreiben bzw. deren Auswirkungen berechnen. Neben den elementaren Modulationsverfahren werden dabei grundlegende Kenntnisse über die gängigen Übertragungsmedien wie die elektrische Leitung, optische Übertragungsmedien und die Datenübertragung per Funk vermittelt.

Kompetenzen: Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Studien-Prüfungsleistungen: Mündlich Prüfung (ca. 30 min) oder Klausur ab 35 Teilnehmer

Medienformen: Tafel, Folien, Beamer, Vorlesungsskript, Übungsaufgaben incl. Lösungen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Ingenieurmathematik IV</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Ingenieurmathematik IV – Numerik der Differentialgleichungen</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. L. Angermann, Prof. O. Ippisch, Dr. H. Behnke</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>4 SWS, 3 Vorlesung/ 1 Übung, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 56 h Präsenzstudium, 94 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Ingenieurmathematik I-III</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden können verschiedene Typen von Differentialgleichungen erkennen und Lösungswegs benennen. Die Lösung können sie mit analytischen oder numerischen Methoden finden bzw. approximieren. Sie können die Genauigkeit beurteilen einer approximativen Lösung kritisch beurteilen und Schlussfolgerungen für die Anwendung auf reale Probleme ziehen.

Kompetenzen

Vertiefte Kenntnisse im mathematisch-, natur- und ingenieurwissenschaftlichen Bereich zur Lösung komplexer Aufgabenstellungen

Inhalt

Studien-Prüfungsleistungen:

Klausur (120 Min., > 10 Teilnehmer) oder mündliche Einzelprüfung (30 Min. < 11 Teilnehmer),

Medienformen:

Skript, Tafel, Beamer, Rechnervorführungen

Literatur:

- Schäfer: Numerik im Maschinenbau, Springer, 1999
Studiengang: Master Maschinenbau

Modulbezeichnung: Innovative nichtmetallische Werkstoffe und Bauweisen

Lehrveranstaltung / Teilmodul: Innovative nichtmetallische Werkstoffe und Bauweisen

Semester: 2.

Dozent(in): Prof. G. Ziegmann / Prof. Deubener

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflicht

Studienrichtung Materialtechnik

Lehrform / SWS: Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt

Arbeitsaufwand: 150 h; 42 h Präsenzstudium, 108 h Selbststudium

Kreditpunkte: 5

Voraussetzungen: Grundlagen Werkstoffwissenschaften

Lernziele: Die Studierenden kennen die Grundlagen und Unterschiede der Werkstoffe / Werkstoffkombinationen im Polymer- und anorganisch/nichtmetallischen Bereich. Sie können den strukturellen Aufbau der Werkstoffe nennen und daraus deren Eigenschaftsprofil ableiten. Weiter werden die wesentlichen Herstellungsverfahren vermittelt, welche die Studierenden in ihren Grundzügen wiedergeben können. Die Studierenden sollen in die Lage versetzt werden Materialien und Herstellungsverfahren für innovative Bauteile / Strukturen für verschiedene Endanwendungen gegenüberzustellen und hinsichtlich ihrer Eignung zu bewerten.

Kompetenzen: Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:

1. Einleitung
 - Werkstoffübersicht: Funktions- und Konstruktionswerkstoffe
 - Anwendungsbeispiele: aktiver / passiver Einsatz
 - das Auto als Beispiel für den Einsatz verschiedener Werkstoffe

2. Klassischer Werkstoff Glas innovativ durch
 - "neue" Oberfläche (Beschichtung): Wärmeschutz, Antireflexionsschutz, Kratzschutz und transparente elektrische Kontakte
 - "neue" Form: Glasfasern und Dünnglas
 - "neues" Gefüge: Glaskeramik und Aerogle

3. Keramiken
 Oxide: Hochtemperaturbeständigkeit und Korrosionsschutz (Katalysatoren), Dielektrika (Sensoren) und Hochtemperatur-Supraleiter (Stromtransport)
 - Nichtoxide: Verschleisschutz (Wälz- und Gleitlager, Schneidwerkzeuge), Gewichtsreduzierung (Motorenbauteile), Korrosionsschutz (Brennerrohre, Brennkammerauskleidung) und Hochtemperatureinsatz (Wärmetauscher, Ofenaufbauten)
 - Faserverstärkte Werkstoffe: Sprödigkeitsabbau (Weltraumspiegel, Gasturbine)

4. Polymere
- Struktur und Aufbau der Polymere
- Verarbeitungstechnologische Eigenschaften
- Fließverhalten in der Schmelze
- Erstarrungsvorgänge bei der Abkühlung der Schmelze
- Formgebende Verfahren
- Extrusion von Profilen, Folien und Platten (z.B. Fensterprofile, Blasfolien etc.)
- Spritzgießen von Grossserienbauteilen (z.B. Einkomponenten-, Mehrkomponentenspritzguss, Gasinjektionstechnik)
- Spritzgiessen von duroplastischen Bauteilen
- Elastomere Systeme für Dichtungen, Dämpferelemente, etc.

5. Verbundwerkstoffe
- Verstärkungsfasern: Glas, Aramid, Kohlenstoff, Natur
- Duromere Matrix
- Kurzfaserverstärkte SMC-Bauteile der Karosserie (z.B. Heckklappe)
- Fahrrad in RTM-Technik
- Thermoplastische Matrix
- GMT-Bauteil, Kurzfaserverstärkung Unterboden PKW
- Langfaserverstärkte Thermoplaste für Stossfähigerbiegeträger etc.

6. Praktische Übungen

<table>
<thead>
<tr>
<th>Studien-Prüfungsleistungen:</th>
<th>Klausur (120 Minuten) > 5 Teilnehmer, mündliche Prüfung (30 Minuten, Einzelprüfung) < 5 Teilnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Powerpointpräsentation, Tafelübungen</td>
</tr>
<tr>
<td></td>
<td>- Flemming, Ziegmann Roth: Faserverbundbauweisen - Fasern und Matrices Springer Verlag</td>
</tr>
<tr>
<td></td>
<td>- Flemming, Ziegmann, Roth: Faserverbundbauweisen - Fertigungsverfahren aus duroplastischer Matrix, springer Verlag</td>
</tr>
<tr>
<td></td>
<td>- Flemming, Ziegmann Roth: Faserverbundbauweisen - Halbzeuge und Bauweisen, Springer Verlag</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Master</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Leistungsmechatronische Systeme</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Leistungsmechatronische Systeme</td>
</tr>
<tr>
<td>Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. D. Turschner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Studienrichtung Allgemeiner Maschinenbau: Pflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Mechatronik: Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studenten erwerben Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen, sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen. Ihr Wissen und Verstehen bildet die Grundlage für die Entwicklung eigenständiger Ideen. Absolventen erhalten die Kompetenz, ihre Fähigkeiten zur Problemlösung neuer Situationen anzuwenden, die in einem multidisziplinären Zusammenhang mit ihrem Studienfach stehen. Sie können weitgehend autonom eigenständige Forschungsprojekte durchführen.</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Einleitung</td>
</tr>
<tr>
<td></td>
<td>2. Mechanische Grundlagen: Impulssatz</td>
</tr>
<tr>
<td></td>
<td>3. Fremderregte Gleichstrommaschine: Mathematisches Modell der Gleichstrommaschine, Regelung im Grunddrehzahlbereich, der Ankerstromregelkreis, Regleereinstellung für große Ankerzeitkonstanten, zusätzliche Aufschaltung der induzierten Spannung, der Drehzahlregelkreis, Drehzahlregelung im Feldschwächbereich,</td>
</tr>
<tr>
<td></td>
<td>5. Steuerverfahren für Frequenzumrichter: Raumzeigermodulation, Berechnung der Schaltzeiten</td>
</tr>
<tr>
<td></td>
<td>6. Modellierung zeitdiskreter Systeme: Arbeitsweise von digitalen Regelkreisen, Algorithmen für digitale Regelungen, die z-Transformation, diskrete lineare Filter</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
</tbody>
</table>
| Medienformen: | • Skript in Papierform
• Rechnerpräsentation
• Übungen mit Matlab/Simulink |
|--------------|--|
| Literatur: | • Leonhard: Regelung elektrischer Antriebe
• Weitere ausführliche Literaturhinweise im Literaturverzeichnis des Skriptes |
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Messtechnik II</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Messtechnik II</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Rembe</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studienrichtung Mechatronik: Pflicht Studienrichtung Automatisierungstechnik: Wahlpflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Messtechnik I,</td>
</tr>
</tbody>
</table>

Lernziele

1. die Grundlagen der Fertigungsmesstechnik und Ihre Bedeutung für die Qualitätssicherung.
2. Außerdem kennen sie die Grundlagen der Messtechnik für dimensionelle Messgrößen sowie die Grundlagen der geometrische Produktspezifikation (GPS) und -prüfung.
3. Sie kennen die Eigenschaften von stochastischen Signalen sowie
4. die grundlegenden Prinzipien und Eigenschaften von Ultraschallsensoren und optischen Messsystemen.

Die Studenten können
1. die Bewertung der Messgerätefähigkeit von Prüfmitteln für Produktionsprozesse durchführen
2. Sie können Ultraschallsensoren und optische Messverfahren einsetzen.
3. Sie können selbständig die Inhalte der Vorlesung mit Hilfe eines Lehrbuchs aufarbeiten.

Die Studenten wissen
1. wie Messunsicherheiten nach dem GUM (Guide to the Expression of Uncertainty in Measurement) bestimmt werden
2. und sie wissen, wie eine Analyse Bewertung von Rauscheigenschaften von Messsensoren und Messsystemen durchzuführen ist.
3. Sie erarbeiten sich die Lösungen der Übungsaufgaben selbständig.

Kompetenzen

Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:

1. Grundlagen und Bedeutung der Fertigungsmesstechnik
2. Bestimmung von Messunsicherheiten nach dem GUM
3. Bewertung der Messgerätefähigkeit
4. Dimensionelle Messtechnik und GPS
5. Prüfdatenerfassung
6. Prüfmittelmanagement
7. Stochastische Signale und Rauscheigenschaften von Messsystemen
8. Grundlagen der Ultraschallsensorik
<table>
<thead>
<tr>
<th>Studien-Prüfungsleistungen:</th>
<th>Mündliche Prüfung oder Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Folien, Übungsaufgaben incl. Lösungen als Textdokumente, Tafel</td>
</tr>
<tr>
<td></td>
<td>A. Weckenmann, "Koordinatenmesstechnik", Carl Hanser, 2012</td>
</tr>
<tr>
<td></td>
<td>H. Kuttruff, Physik und Technik des Ultraschalls, S. Hirzel Verlag, 1988</td>
</tr>
<tr>
<td></td>
<td>H. Klausing, Radar mit realer und synthetischer Apertur, Oldenbourg, 1999</td>
</tr>
<tr>
<td></td>
<td>W. Osten, "Optical Inspection of Microsystems", Taylor & Francis, 2007</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Methode der finiten Elemente</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Methode der finiten Elemente</td>
</tr>
<tr>
<td>Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. St. Hartmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3V/1U SWS, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 56 h Präsenzstudium, 94 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Technische Mechanik I-III, Mathematik I-III</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden sollten nach Absolvierung dieser Veranstaltungen folgende Ziele erreicht haben:</td>
</tr>
<tr>
<td></td>
<td>• Sie können die dreidimensionalen Grundgleichungen der Theorie kleiner Verzerrungen bestehend aus den Gleichgewichtsbedingungen, dem Prinzip der virtuellen Verschiebungen und des Prinzips vom Minimum des Gesamtpotentials wiedergeben und die auftretenden Termine erläutern und interpretieren.</td>
</tr>
<tr>
<td></td>
<td>• Sie verstehen die Durchführung der Raumdiskretisierung sowie die Gauss-Integration und können diese herleiten.</td>
</tr>
<tr>
<td></td>
<td>• Sie können das implizite Euler-Verfahren auf die raumdiskretisierten Gleichungen bei Materialmodellen mit Evolutionsgleichungen anwenden und das Verfahren erläutern.</td>
</tr>
<tr>
<td></td>
<td>• Sie können das Newton-Raphson und das Multilevel-Newton Verfahren erläutern und herleiten.</td>
</tr>
<tr>
<td></td>
<td>• Sie kennen die dreidimensionalen Gleichungen der Elastizität, das Dreiparametermodell der linearen Viskoelastizität (sowie kleinere Modifikationen) und die von Mises-Plastizität (und Viskoplastizität).</td>
</tr>
<tr>
<td></td>
<td>• Sie haben Grundkenntnisse der Implementierung und Programmierung eines linearen und nichtlinearen Finite-Elemente Programms.</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Gleichgewicht, Kinematik und lineare Elastizität dreidimensionaler Festkörper Energieminimierung</td>
</tr>
<tr>
<td></td>
<td>Schwache Formulierung (Prinzip der virtuellen Verschiebungen)</td>
</tr>
<tr>
<td></td>
<td>Raumdiskretisierung (ein-, zwei- und dreidimensional)</td>
</tr>
<tr>
<td></td>
<td>Numerische Integration (Gauss-Quadratur)</td>
</tr>
<tr>
<td></td>
<td>Aufbau des linearen Gleichungssystems</td>
</tr>
<tr>
<td></td>
<td>Viskoelastizität, Elastoplastizität, Viskoplastizität</td>
</tr>
<tr>
<td></td>
<td>Numerische Zeitintegration von Algebro-Differentialgleichungssystemen</td>
</tr>
<tr>
<td></td>
<td>Lösung nichtlinearer Gleichungssysteme</td>
</tr>
<tr>
<td></td>
<td>Spannungsalgorithmen und Linearisierung</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Ab 20 Prüfungsteilnehmern wird eine Klausur (Dauer 2h) angeboten. Ist die Teilnehmerzahl geringer erfolgt eine mündliche Prüfung.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skriptum zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Hughes; The finite element method, Prentice Hall, 1987</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Nichtlineare Regelungstechnik</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Nichtlineare Regelungssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. C. Bohn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Studienrichtung Automatisierungstechnik</td>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/ Übung 3 SWS, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundlagen der Regelungstechnik, wie sie z.B. in Regelungstechnik I vermittelt werden, Vertiefte Kenntnisse der Zustandsraumdarstellung, z.B. aus Regelungstechnik II vorteilhaft, aber nicht Voraussetzung</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden sollen die Aufgabenstellungen und die systemtheoretischen Herangehensweisen bei der Behandlung von nichtlinearen Regelungssystemen kennenlernen und prinzipiell anwenden können. Hierunter fallen Analysemethoden für nichtlineare (Regelungs-)Systeme sowie Syntheseverfahren für den Entwurf nichtlinearer Regelungen.</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Festlegung von Prüfungsform (Klausur oder mündliche Prüfung) und Dauer gem. der geltenden Prüfungsordnung, in der Regel mündliche Prüfung (30 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafelanschrieb, z.T. Folien und Hilfsmaterialien, Übungsblätter</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Ölhydraulik</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Ölhydraulik</td>
</tr>
<tr>
<td>Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. S. Krüger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Lernziele:</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-</td>
<td>Klausur (120 min.) bestehend aus Kurzfragen- und Berechnungsteil</td>
</tr>
<tr>
<td>Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Pneumatik</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Pneumatik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. oder 3..</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. H. Schwarze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Klausur (90 min.) bestehend aus Kurzfragen- und Berechnungsteil</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Power Point</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Polymerwerkstoffe I</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>Polymerwerkstoffe I – Thermoplastische Systeme</td>
</tr>
<tr>
<td>/ Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Leif Steuernagel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch/englisch (auf Wunsch der Studierenden)</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td></td>
</tr>
<tr>
<td>Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Teilnehmer unbegrenzt, Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
</tbody>
</table>
| Inhalt: | 1. Einführung in die Problematik und Aufbau der Polymere
| | - Aufbau, Zustandsbereiche
| | - Bindungskräfte von Polymeren
| | - Einfluss von Zuschlagsstoffen
| | - Reaktion vom Monomer zum Polymer |
| | 2. Struktur der Polymerwerkstoffe
| | - Homogene Polymerwerkstoffe
| | - Heterogene Polymerwerkstoffe
| | - Heterogene Verbundwerkstoffe
| | 3. Schmelzverhalten von Polymeren
| | - Fließverhalten von Polymeren
| | - Rechnerische Abschätzung nach Potenzgesetz
| | - Viskositäts-Temperatur-Verschiebungsprinzip
| | - Orientierungen in der Schmelze
| | - Einfluss der Molekülgestalt
| | 4. Abkühlvorgänge von Polymeren aus der Schmelze
| | - Abkühlvorgänge
| | - Thermodynamische Kenngrößen und Zustandsänderungen
| | - Erstarrungsvorgänge bei amorphen und teilkristallinen Polymeren, Nukleierung
<p>| | - Kristallisationskinetik |</p>
<table>
<thead>
<tr>
<th>Studien-Prüfungsleistungen:</th>
<th>mündliche Prüfung über 30 Minuten oder Klausur über 60 Minuten; kritische Teilnehmeranzahl bei 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Abrufbare Skripte, Tafel, Präsentationen</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Menges: Werkstoffkunde Kunststoffe, Carl Hanser Verlag, München Wien</td>
</tr>
<tr>
<td></td>
<td>Schwarz: Kunststoffkunde, Vogel Buchverlag, Würzburg (1988)</td>
</tr>
<tr>
<td></td>
<td>Michaeli: Einführung in die Kunststoffverarbeitung, Carl Hanser Verlag, München Wien</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Praktika</td>
</tr>
</tbody>
</table>
| Lehrveranstaltung / Teilmodul | 1. Fachpraktikum Rechnergestützte Betriebsfestigkeitsanalyse
2. Höhere FEM-Simulation mit ANSYS
3. Integriertes Produktdatenmanagement (PDM)
4. Praktischer Betriebsfestigkeitsnachweis nach FKM-Richtlinie
5. Praktikum Schweißtechnik und trennende Fertigungsverfahren
6. Praktikum Tribologie
7. Praktikum Verbrennungskraftmaschinen
8. Fachpraktikum Digitale Fabrik
9. Messtechnisches Labor
10. Praktikum Prozessautomatisierung
11. Praktikum zur Hochspannungstechnik
12. Regelungstechnisches Praktikum |
| Semester: | 3 |
| Dozent(in): | 1. Prof. A. Esderts
2. Prof. Dr.-Ing. Armin Lohrengel
3. Prof. N. Müller
4. Prof. A. Esderts
5. Prof. V. Wesling
6. Prof. Dr.-Ing. H. Schwarze
7. Prof. Dr.-Ing. H. Schwarze
8. Prof. U. Bracht
9. Prof. Rembe
10. Dr. Chr. Vetter
11. Dr. E-A. Wehrmann
12. Prof. Dr.-Ing. C. Bohn |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum | Wahlpflicht
<p>| Lehrform / SWS: | jeweils Praktika 2 SWS |
| Arbeitsaufwand: | jeweils 90 h; 28 h Präsenzstudium, 62 h Selbststudium |
| Kreditpunkte: | 6 |
| Kompetenzen | Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Fachpraktikum Rechnergestützte Betriebsfestigkeitsanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Esderts</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlfach</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum als Blockveranstaltung über mehrere Tage, Teilnehmerzahl begrenzt</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Betriebsfestigkeit I</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Planung und Durchführung einer Betriebsmessung, Aufbereiten und Auswerten der Daten, Analyse der Lebensdauer an einem Beispiel; Fähigkeit in Teams zu arbeiten.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Installieren von DMS</td>
</tr>
<tr>
<td></td>
<td>Messen an einem Fahrrad</td>
</tr>
<tr>
<td></td>
<td>Aufbereiten der Daten mit FAMOS</td>
</tr>
<tr>
<td></td>
<td>Durchführen einer Lebensdauerrechnung</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Protokoll über das Praktikum</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Höhere FEM-Simulation mit ANSYS</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Armin Lohrengel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlfach</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS; Teilnehmer begrenzt (max. 30 Teilnehmer)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Kenntnisse in Technischer Mechanik, Statik und Festigkeitslehre, Praktikum mit Ansys Teil 1, Grundlagen der Programmierung (z.B. C++)</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Nachdem die Studierenden das Lerngebiet erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:</td>
</tr>
<tr>
<td></td>
<td>- FEM-Simulationen im Bereich der Strukturmechanik durchzuführen und zu bewerten</td>
</tr>
<tr>
<td></td>
<td>- komplexe Modelle für die Berechnung so weit wie möglich zu abstrahieren</td>
</tr>
<tr>
<td></td>
<td>- verschiedene Vernetzungsstrategien zu kennen und anzuwenden, um für die jeweilige Berechnung ein optimales Netz zu erhalten</td>
</tr>
<tr>
<td></td>
<td>- mittels APDL Skript eigene Modelle zu konfigurieren</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Übungen und Aufgaben zu allen Programmteilen, selbständige Durchführung einer kleinen Festigkeitsuntersuchung (6-wöchiges semesterbegleitendes Projekt), bewerteter Projektbericht</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Skript, Rechnerarbeitsplatz</td>
</tr>
<tr>
<td></td>
<td>MÜLLER, G., GROTH, C., STELZMANN, U.; FEM für Praktiker, 3. Temperaturfelder; Expert-Verlag, 2009</td>
</tr>
<tr>
<td></td>
<td>JUNG, M., LANGER, U.; Methode der finiten Elemente für Ingenieure; Eine Einführung in die numerischen Grundlagen und Computersimulation. Vieweg+Teubner Verlag, 2001</td>
</tr>
<tr>
<td></td>
<td>STACHOWIAK, H; Allgemeiner Modelltheorie; Springer, Wien 1973</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Integriertes Produktdatenmanagement (PDM)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. N. Müller</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlfach</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktika 2 SWS; Teilnehmer max. 15</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Vorlesung Rechnerintegrierte Produktentwicklung empfehlenswert; CAD-Grundkenntnisse</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Mündl. Prüfung; Bericht Erstellung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Powerpoint, PDM-System</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Praktischer Betriebsfestigkeitsnachweis nach FKM-Richtlinie</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professor Dr.-Ing. Esderts und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung im Curriculum:</td>
<td>Wahlfach</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Praktikum; 2 SWS; Teilnehmer max. 15; Blockveranstaltung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundkenntnisse in: FEM mit Ansys, Festigkeitsnachweis, Technische Mechanik (VL TM I und TM II), Betriebsfestigkeit (VL Bauteilprüfung und Betriebsfestigkeit I)</td>
</tr>
</tbody>
</table>
2. Betreutes Bearbeiten eines Beispiels:
 • Aufbereiten der Beanspruchungen
 • Ermittlung der örtlichen elastischen Spannungen mithilfe von Ansys
 • Durchführen des Festigkeitsnachweises
3. Selbständige Ausarbeitung eines Festigkeitsnachweises mit ausführlicher Dokumentation |
<p>| Studien-Prüfungsleistungen: | Im Rahmen einer vorgegebenen Aufgabenstellung ist ein Festigkeitsnachweis durchzuführen und in schriftlicher Form zu dokumentieren. |
| Medienformen: | Skript, Powerpoint, Ansys, Matlab oder Famos, Word |
| Literatur: | Skript, FKM-Richtlinie |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Praktikum Schweißtechnik und trennende Fertigungsverfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. V. Wesling</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS, Teilnehmer max. 24</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Schweißtechnik 1</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden vertiefen das verfahrenspezifische Wissen aus den Grundlagenvorlesungen zu jeweils einem Verfahren aus der Fügetechnik oder der Trennenden Fertigungstechnik und eignen sich auch das prozesstechnische, werkstoffkundliche und werkstoffphysikalische Wissen an, um es in einem praktischen Versuch anzuwenden. Sie werten Messdaten aus und beurteilen das Ergebnis anhand von Bewertungskriterien. Sie vertiefen ihre Erfahrungen in Gruppenarbeit und bei der Dokumentation technischer Vorgänge</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Versuch 1 (Laserstrahl schweißen von Leichtmetallen): Lasertechnik, Fügen von Aluminiumlegierungen</td>
</tr>
<tr>
<td></td>
<td>Versuch 2 (ZTU-Diagramme): Schweißsimulator, Erstellung von ZTU-Diagrammen und STAZ</td>
</tr>
<tr>
<td></td>
<td>Versuch 3 (Schweißstromquellen und Regelung): Lichtbogenregelung beim Schweißen, Aufbau von Schweißstromquellen</td>
</tr>
<tr>
<td></td>
<td>Versuch 4 (Technologische Kennwerte von Schweißverbindungen): konventionelle Zugprüfung, Hochgeschwindigkeitszugprüfung, Härtemessung, Schwingversuche, Kerbschlagarbeit</td>
</tr>
<tr>
<td></td>
<td>Versuch 5 (Schnittkraftversuch): Schnittkraftmessung im Drehversuch</td>
</tr>
<tr>
<td></td>
<td>Versuch 6 (Standzeit): Standzeitdrehversuch</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Je Versuch: Vorkolloquium, Versuchsdurchführung, Protokoll Praktikum: Abschlussklausur (60min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Powerpoint, praktische Versuche</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Praktikum Tribologie</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. H. Schwarze, Dr.-Ing. T. Hagemann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS; Teilnehmeranzahl begrenzt (max. 20)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Tribologie, Angewandte Tribologie im Maschinenbau</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Nach Bestehen der Prüfung sollen die TeilnehmerInnen dieses Praktikums zur physikalischen Beschreibung, Modellbildung sowie zur Implementierung von Berechnungsmodellen tribologischer Kontakte in Quellcode grundlegend befähigt sein. Sie sollen entsprechende programmierarbeiten selbständig durchführen, verifizieren und dokumentieren können.</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Durchführung und Protokollierung einer Programmieraufgabe als Hausarbeit. Präsentation von Ergebnissen zur Untersuchung eines Gleitlagerbetriebsverhaltens</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Matlab, Webcasts vom Video Server der TUC, PowerPoint</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Praktikum Verbrennungskraftmaschinen</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Schwarze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einfluss der Aufladung am Verbrennungsmotor</td>
</tr>
<tr>
<td></td>
<td>Motorenverschleiß</td>
</tr>
<tr>
<td></td>
<td>Untersuchungen am Zylinderkopfprüfstand</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Protokoll</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Messtechnisches Labor</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Rembe</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 P; Teilnehmerzahl auf 12 begrenzt</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Inhalte der Bachelorvorlesungen Messtechnik I, Signale & Systeme (Signalübertragung)</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studenten erlernen den praktischen Einsatz typischer Messverfahren, Messgeräte und Sensoren.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Messwerterfassung mit dem PC</td>
</tr>
<tr>
<td></td>
<td>• Digitale Störsignalunterdrückung</td>
</tr>
<tr>
<td></td>
<td>• Korrelation</td>
</tr>
<tr>
<td></td>
<td>• Feldbussysteme</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Kurztest, Abgabe von Versuchsprotokollen</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Praktikumsumdrucke</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Praktikumsumdrucke</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Fachpraktikum Digitale Fabrik</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Semester:</td>
<td></td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. U. Bracht</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS; Teilnehmerzahl begrenzt</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Nach dem erfolgreichen Abschluss dieses Fachpraktikums</td>
</tr>
<tr>
<td></td>
<td>haben die Studierenden grundlegende Kenntnisse eines umfassenden Softwarepaketes der Digitalen Fabrik erlangt,</td>
</tr>
<tr>
<td></td>
<td>sind sie in der Lage Datenaufnahmen für die Erstellung von digitalen Modellen selbstständig durchzuführen,</td>
</tr>
<tr>
<td></td>
<td>verfügen Sie über die nötigen Kenntnisse zur Planung und Erstellung von 2D- und 3D-Anlagenlayouts,</td>
</tr>
<tr>
<td></td>
<td>haben sie grundlegende Erfahrungen mit den Schnittstellen (Datenkonvertierung, ganzheitliches Datenmanagement) der Werkzeuge und Methoden der Digitalen Fabrik gesammelt,</td>
</tr>
<tr>
<td></td>
<td>können die Studierenden moderne Virtual Reality- und Augmented Reality-Instrumente aktiv anwenden.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einarbeitung in ein Softwarepaket bestehend aus der Factory Design Suite von Autodesk, IC.IDO und IMAB-Eigenentwicklungen</td>
</tr>
<tr>
<td></td>
<td>Datenaufnahme mit unterschiedlichen Systemen (IMAB-Datenaufnahmeassistent, Recap 360)</td>
</tr>
<tr>
<td></td>
<td>Erstellung eines rudimentären Materialfluss simulationsmodells (Process 360)</td>
</tr>
<tr>
<td></td>
<td>Planung eines 2D-Anlagenlayouts (AutoCAD)</td>
</tr>
<tr>
<td></td>
<td>Erstellung eines 3D-Modells (Inventor Mechanical)</td>
</tr>
<tr>
<td></td>
<td>3D-Virtual-Reality Untersuchungen (IC.IDO)</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Eingangsklausur (20 min), Bewertung der Teilergebnisse jeder Softwarelösung, Vortrag / Abschlusspräsentation</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Skripte</td>
</tr>
<tr>
<td></td>
<td>Präsentationen</td>
</tr>
<tr>
<td></td>
<td>Tablets</td>
</tr>
<tr>
<td></td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>Planungstisch</td>
</tr>
<tr>
<td></td>
<td>Video-Tutorials</td>
</tr>
<tr>
<td></td>
<td>Virtual-Reality-Labor</td>
</tr>
<tr>
<td>Literatur:</td>
<td>In den Praktikumsskripten angegeben</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Praktikum Prozessautomatisierung</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Semester:</td>
<td>3.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Chr. Vetter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS; auf 12 Teilnehmer begrenzt</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>SPS-Erfahrung (z.B. im Rahmen des Praktikums im Bachelor)</td>
</tr>
</tbody>
</table>

Lernziele
- Reale Steuerungen technischer Prozesse analysieren und nachvollziehen
- SPS-Programmierung in zugehöriger Entwicklungsumgebung kennen und anwenden
- Erweiterung/Veränderung einer bestehenden Steuerung planen und umsetzen
- Fehlersuche in Anlage durchführen, Fehler beheben

Inhalt:
1. Einleitung in die verwendete Hard- und Software und die Funktion der Versuche
2. Planung und Aufbau eines Versuchs, Spezifikation und Aufbau der Prozessperipherie
3. Entwicklung von Zeitplänen, Struktogrammen und Petrinetzen, Programmierung (SPS-Sprachen)
 Ansteuerung industrieller Bussysteme (ASI, Profibus, Profinet)
 Erstellung und Bewertung von interaktiven Prozessvisualisierungen
4. Test und Inbetriebnahme einer der o.g. Anlagen

Studien-Prüfungsleistungen:
- Verschiedene eigenständige Ausarbeitungen, mündliche Wissenskontrolle

Medienformen:
- PDF-Unterlagen, zwei betriebsbereite Anlagen, jeweils mit Entwicklungs- und Kontrollrechner

Literatur:
- R. Lauber: Prozessautomatisierung, Springer
- Weitere werden im Praktikum bekannt gegeben
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Praktikum zur Hochspannungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>3</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. E.-A. Wehrmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Hochspannungstechnik</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studenten kennen nach Abschluss des Laborpraktikums die theoretischen Grundlagen sowie die praktische Anwendung der wesentlichen Erzeugungsmethoden hoher Spannungen (Gleich-, Wechsel- und Stoßspannung) sowie der zugehörigen Messmethoden. Darüber hinaus lernen sie den Einfluss hoher Spannungen und Feldstärken auf beispielhafte feste, flüssige und gasförmige elektrische Isolierstoffe kennen sowie die zugehörigen Verlust- und Durchschlagmechanismen.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Erzeugung hoher Gleichspannungen Anwendungsbereiche, Einzweigsschaltung, Mittelpunktsschaltung, Verdopplerschaltungen, Verdreifacherschaltungen, Greinacher-Kaskade</td>
</tr>
<tr>
<td></td>
<td>2. Erzeugung von Stoßspannungen Definition, einstufige Anlage, Berechnung, positiver/negativer Stoß, Verdopplung der Stoßspannung, Stoßspannungskaskaden</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Praktikum mit mündlichem/schriftlichen Vor- und Nachtestat und schriftlichem Protokoll</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Skript</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Im Skript jeweils versuchsspezifisch angegeben</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Regelungstechnisches Praktikum</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. C. Bohn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum 2 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Inhalte der Vorlesung Regelungstechnik 1</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Praktische Anwendung und Vertiefung der regulierungstechnischen theoretischen Grundlagen an praktischen Problemen in Laborversuchen in Teamarbeit Die Studierenden wenden fachspezifische ingenieurwissenschaftliche Kenntnisse und Methoden zur Lösung praktischer Problemstellungen an</td>
</tr>
</tbody>
</table>
| Inhalt: | • Einführung in Matlab und Simulink und Analyse elementarer Übertragungsglieder
• Parameteridentifikation und Modellierung eines Torsionspendels
• Bode-Diagramm und Drehzahl-/Lageregelung am DC-Motor
• PD-Regler und PID-Regler |
<p>| Studien-Prüfungsleistungen: | Hausaufgaben zur Vorbereitung, Versuchsdurchführung, Abgabe von Versuchsprotokollen |
| Medienformen: | Praktikumsumdrucke |
| Literatur: | Praktikumsumdrucke |</p>
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Semester:</td>
<td>3.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dozenten aus der Lehreinheit Maschinenbau</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Ausarbeitung 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Nachdem die Studierenden das Modul erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:</td>
</tr>
<tr>
<td></td>
<td>- in Teamarbeit oder eigenverantwortlich innerhalb einer vorgegebenen Frist ein interdisziplinares Problem gehobener Schwierigkeit aus der gewählten Studienrichtung zu analysieren,</td>
</tr>
<tr>
<td></td>
<td>- geeignete Modelle und Methoden zu seiner Lösung zu identifizieren, eventuell anzupassen und zu nutzen</td>
</tr>
<tr>
<td></td>
<td>- und das Ergebnis in angemessener Form schriftlich darzustellen, zu präsentieren und zu bewerten.</td>
</tr>
<tr>
<td></td>
<td>- die einzelnen Arbeitsschritte zu planen, zu organisieren und durchzuführen.</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Kenntnisse und Fähigkeit, Forschungs- und Entwicklungsaufgaben selbständig nach ingenieurwissenschaftlichen Methoden zu bearbeiten, zu dokumentieren und Arbeitsergebnisse darzustellen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Studierenden erarbeiten anhand der Projekt-Arbeit eine Problemstellung innerhalb eines Forschungsprojektes der TU Clausthal selbständig und legen die Erkenntnisse in einer Ausarbeitung dar und präsentieren diese.</td>
</tr>
<tr>
<td></td>
<td>Es handelt sich hierbei um eine praktische Arbeit, in der die im Studium erlernten Fähigkeiten zur Anwendung kommen sollen. Das Projekt kann in Einzel- oder Gruppenarbeit erfolgen.</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Schriftliche Ausarbeitung, Präsentation der Projektarbeit von ca. 30 Minuten (mit anschließender Diskussion) im Rahmen eines Seminars vor Fachvertretern</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig von der Themenstellung</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Rechnerintegrierte Fertigung</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Rechnerintegrierte Fertigung</td>
</tr>
<tr>
<td>Semester:</td>
<td>WS</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. N. Müller</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Studienrichtung Allgemeiner Maschinenbau</td>
<td></td>
</tr>
<tr>
<td>Studienrichtung Automatisierungstechnik</td>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Fertigungstechnik, Datenverarbeitung</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Begriffe und Definitionen</td>
</tr>
<tr>
<td></td>
<td>2. Schnittstelle Konstruktion und Entwicklung</td>
</tr>
<tr>
<td></td>
<td>3. Rechnergestützter Konstruktionsprozess (Schnittstellen, Stücklisten)</td>
</tr>
<tr>
<td></td>
<td>4. NC-Programmierung</td>
</tr>
<tr>
<td></td>
<td>5. Rapid Prototyping</td>
</tr>
<tr>
<td></td>
<td>6. Integrierte Produktionsplanung und -steuerung PPS</td>
</tr>
<tr>
<td></td>
<td>7. Fertigungsleitsysteme</td>
</tr>
<tr>
<td></td>
<td>8. Informationssysteme</td>
</tr>
<tr>
<td></td>
<td>10. Anwendung von Automatisierung im CIM-Konzept</td>
</tr>
<tr>
<td></td>
<td>11. Systemanalyse und Systemauswahl</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Klausur (60 Min.)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Powerpoint, Tutorien</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td></td>
<td>- Spur; Krause; Das virtuelle Produkt; Hanser-Verlag 1997</td>
</tr>
<tr>
<td></td>
<td>- Gebhardt; Generative Fertigungsverfahren; Hanser-Verlag 2007</td>
</tr>
<tr>
<td></td>
<td>- Schmidt u.a. Produktion, Technologie und Management 2013</td>
</tr>
<tr>
<td></td>
<td>- Weiler, W. Automatisierungstechnik im Überblick, Beuth-Verlag 2008</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Regelungstechnik II</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Regelungstechnik II</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. C. Bohn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Mechatronik</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 018 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Zustandsraumdarstellung, Lösung der Zustandsdifferentialgleichung, Zeitdiskrete Systeme, Eigenschaften von Zustandsraummodellen (Steuerbarkeit, Beobachtbarkeit, Erreichbarkeit, Detektierbarkeit), Zustandsregelung, Entwurf von Zustandsreglern über Polvorgabe, Zustandsregler mit Integralanteil, Zustandsbeobachter, Beobachterbasierte Zustandsregelung, Ausblick auf optimale Regelung und Zustandsschätzung</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Festlegung von Prüfungsform (Klausur oder mündliche Prüfung) und Dauer gemäß der geltenden Prüfungsordnung, in der Regel Klausur mit einer Dauer von 120 min</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafelanschrieb, Folien, Übungsblätter und Lösungen</td>
</tr>
<tr>
<td></td>
<td>Ludyk, G. 1995. Theoretische Regelungstechnik 1. Berlin [u.a.]: Springer</td>
</tr>
<tr>
<td></td>
<td>Ludyk, G. 1995. Theoretische Regelungstechnik 2. Berlin [u.a.]: Springer</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Regelungstechnik III</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Regelungstechnik III</td>
</tr>
<tr>
<td>Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. C. Bohn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Automatisierungstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Teil I: (Klassische) Optimale Regelung</td>
</tr>
<tr>
<td></td>
<td>Teil II: Optimale Zustandsschätzung</td>
</tr>
<tr>
<td></td>
<td>Optimale Zustandsschätzung, Kleineste Quadrate Schätzung, Kalman-Filter</td>
</tr>
<tr>
<td></td>
<td>Teil III: Optimale und robuste Regelung</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Festlegung von Prüfungsform (Klausur oder mündliche Prüfung) und Dauer gemäß der geltenden Prüfungsordnung, in der Regel mündliche Prüfung mit einer Dauer von 30 min</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafelanschrieb, Folien, Übungsblätter und Lösungen</td>
</tr>
</tbody>
</table>
Weitere Literaturquellen, z.T. auch wissenschaftliche Originalarbeiten, werden in der Lehrveranstaltung genannt und z.T. auch zur Verfügung gestellt.
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Ressourceneffiziente Produktentwicklung</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>Ressourceneffiziente Produktentwicklung</td>
</tr>
<tr>
<td>Teilmodul:</td>
<td></td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Lohrengel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td></td>
</tr>
<tr>
<td>Curriculum:</td>
<td>Studienrichtung Materialtechnik: Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Allgemeiner Maschinenbau: Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Nachdem die Studierenden das Modul erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:</td>
</tr>
<tr>
<td></td>
<td>- den Konstruktionsprozeß zu analysieren, zu gliedern und zu begutachten,</td>
</tr>
<tr>
<td></td>
<td>- Kennzahl basierte Konstruktionsregeln zu beschreiben, einzuordnen,</td>
</tr>
<tr>
<td></td>
<td>- anzuwenden und zu überprüfen,</td>
</tr>
<tr>
<td></td>
<td>- gesetzliche Vorschriften zu benennen, zu interpretieren, anzuwenden und</td>
</tr>
<tr>
<td></td>
<td>- auszulegen.</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur</td>
</tr>
<tr>
<td></td>
<td>ingenieurwissenschaftlichen Analyse und Synthese von Produkten und</td>
</tr>
<tr>
<td></td>
<td>Systemen</td>
</tr>
<tr>
<td></td>
<td>sowie Spezifische Kenntnisse und Methodenkompetenz zur</td>
</tr>
<tr>
<td></td>
<td>Vertiefung oder Erweiterung ingenieurwissenschaftlicher</td>
</tr>
<tr>
<td></td>
<td>Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Baureihen-, Baukastensysteme, Beanspruchungsgerechte Produktentwicklung,</td>
</tr>
<tr>
<td></td>
<td>Recyclinggerechte Produktentwicklung, Sicherheitsgerechte</td>
</tr>
<tr>
<td></td>
<td>Produktentwicklung, Korrosionsgerechte Produktentwicklung,</td>
</tr>
<tr>
<td></td>
<td>Gestaltungsregeln.</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>In der Regel Klausur, Dauer 90 Minuten.</td>
</tr>
<tr>
<td></td>
<td>In Ausnahmefällen bei weniger als 15 Studierenden mündliche Prüfung. Dauer 30 Minuten</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorlesung Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skipt</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Schweißtechnik I</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Schweißtechnik I</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. V. Wesling, Dr.-Ing. A. Schram</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflicht</td>
</tr>
<tr>
<td></td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen</td>
</tr>
<tr>
<td>Zerstörungsfreie Prüfung</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Mündliche Prüfung (45 min, Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer)</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Powerpoint Präsentation</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Kitting: Handbuch der Schweißverfahren, Teil 1: Lichtbogenschweißverfahren, Fachbuchreihe Schweißtechnik Bd. 76, DVS-Verlag</td>
<td></td>
</tr>
<tr>
<td>Fahrenwald: Schweißtechnik, Verfahren und Werkstoffe, Vieweg-Verlagsgesellschaft</td>
<td></td>
</tr>
<tr>
<td>Eichhorn: Schweißtechnische Fertigungsverfahren, Band 1, VDI-Verlag</td>
<td></td>
</tr>
<tr>
<td>Dr. sc. techn. Schellhase: Der Schweißlichtbogen - ein technologisches Werkzeug, DVS-Verlag Düsseldorf, 1985</td>
<td></td>
</tr>
<tr>
<td>Dr. phys. O. Becker: Handbuch des Schutzgasschweifens, Teil 1: Grundlagen und Anwendung, DVS-Verlag Düsseldorf, 1969, Fachbuchreihe Schweißtechnik Bd. 30 Teil 1</td>
<td></td>
</tr>
<tr>
<td>Boese: Das Verhalten der Stähle beim Schweißen, Teil 1: Grundlagen, DVS-Verlag Düsseldorf, 1995, Fachbuchreihe Schweißtechnik Bd. 44, Teil 1</td>
<td></td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Schweißtechnik II</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Schweißtechnik II</td>
</tr>
<tr>
<td>Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. V. Wesling, Dr.-Ing. A. Schram</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Preßschweißverfahren</td>
</tr>
<tr>
<td></td>
<td>- Widerstandsschweißen</td>
</tr>
<tr>
<td></td>
<td>- Reibschweißen</td>
</tr>
<tr>
<td></td>
<td>- Magnet-Arc-Schweißen</td>
</tr>
<tr>
<td></td>
<td>- Abbrennstumpfschweißen</td>
</tr>
<tr>
<td></td>
<td>Metallurgie des Schweißens</td>
</tr>
<tr>
<td></td>
<td>- Auf- und Abschmelzvorgänge</td>
</tr>
<tr>
<td></td>
<td>- Gasreaktionen</td>
</tr>
<tr>
<td></td>
<td>- Schlackenreaktion</td>
</tr>
<tr>
<td></td>
<td>- Keimbildungs- und Erstarrungsvorgänge</td>
</tr>
<tr>
<td></td>
<td>- Diffusionsvorgänge</td>
</tr>
<tr>
<td></td>
<td>Einteilung der Stähle</td>
</tr>
<tr>
<td></td>
<td>Schweißeignung der un-, niedrig- und hochlegierten Stähle</td>
</tr>
<tr>
<td></td>
<td>- Vorgänge in der Wärmeeinflußzone</td>
</tr>
<tr>
<td></td>
<td>- Eigenschaften der Wärmeeinflußzone</td>
</tr>
<tr>
<td></td>
<td>Schweißzusätze für un-, niedrig- und hochlegierte Stähle</td>
</tr>
<tr>
<td></td>
<td>- Vorgänge im Schweißgut</td>
</tr>
<tr>
<td></td>
<td>- Eigenschaften des Schweißgutes</td>
</tr>
<tr>
<td></td>
<td>Verbindungseigenschaften</td>
</tr>
<tr>
<td></td>
<td>Schweißeignung von Nichteisenmetallen und -legierungen</td>
</tr>
<tr>
<td></td>
<td>- Schweißen von Aluminium und Aluminiumlegierungen</td>
</tr>
<tr>
<td></td>
<td>- Schweißen von Kupfer- und Nickellegierungen</td>
</tr>
<tr>
<td></td>
<td>- Schweißen von Titan und Titanlegierungen</td>
</tr>
<tr>
<td>Schweißen von Magnesiumlegierungen</td>
<td>- Schweißen von Magnesiumlegierungen</td>
</tr>
<tr>
<td>Schweißeignung von Gußeisenwerkstoffen</td>
<td>- Schweißeignung von Gußeisenwerkstoffen</td>
</tr>
<tr>
<td>Fügen von Keramik</td>
<td>- Fügen von Keramik</td>
</tr>
<tr>
<td>Schweißen plattierter Werkstoffe</td>
<td>- Schweißen plattierter Werkstoffe</td>
</tr>
<tr>
<td>Herstellung von Mischverbindungen</td>
<td>- Herstellung von Mischverbindungen</td>
</tr>
</tbody>
</table>

Studien-Prüfungsleistungen:
- Mündliche Prüfung (45 min, Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer)

Medienformen:
- Powerpoint Präsentation

Literatur:
- Anik, Dorn: Schweißeignung metallischer Werkstoffe. Fachbuchreihe Schweißtechnik, Band 122, DVS Verlag
- Bargel, Schulze: Werkstoffkunde. VDI Verlag
- Berns: Stahlkunde für Ingenieure, Springer Verlag
- Boese: Das Verhalten der Stähle beim Schweißen – Teil 1: Grundlagen. Fachbuchreihe Schweißtechnik, Band 44, DVS Verlag
- Dahl, Jäniche: Werkstoffkunde, Band 1 und 2, Springer Verlag
- De Ferri: Metallographia, Band IV, Verlag Staheisen m.b.H., Düsseldorf 1983
- Eichhorn: Schweißtechnische Fertigungsverfahren, Band I, II, VDI-Verlag
- Folkhard: Metallurgie der Schweißung nichtrostender Stähle. Springer-Verlag
- Gudehus, Zenner: Leitfaden für eine Betriebsfestigkeitsrechnung, Verlag Staheisen m.b.H., Düsseldorf
- Killing: Angewandte Schweißmetallurgie. Fachbuchreihe Schweißtechnik; Bd. 113; DVS-Verlag
- Liesenberg, Wittekopf: Stahlguß- und Gußeisenlegierungen, Deutscher Verlag für Grundstoffindustrie
- Ruge: Handbuch der Schweißtechnik, Band I, II, III, Springer-Verlag
- Schulze, Krafka, Neumann: Schweißtechnik Werkstoffe - Konstruieren – Prüfen, VDI-Verlag
<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Schwerpunkt</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Antriebsstrang im Automobil</td>
</tr>
<tr>
<td>2.</td>
<td>Automobilproduktion heute - vom Einzelteil zur fertigen Karosse</td>
</tr>
<tr>
<td>3.</td>
<td>Automotive Management und Technik in der Fahrzeugentwicklung</td>
</tr>
<tr>
<td>4.</td>
<td>Apparative Anlagentechnik I</td>
</tr>
<tr>
<td>5.</td>
<td>Apparative Anlagentechnik II</td>
</tr>
<tr>
<td>6.</td>
<td>Basic principles of molecular dynamics</td>
</tr>
<tr>
<td>7.</td>
<td>Einführung in den gewerblichen Rechtsschutz, insbesondere Patentrecht</td>
</tr>
<tr>
<td>8.</td>
<td>Einführung in die Fügetechnologie des Lötens</td>
</tr>
<tr>
<td>9.</td>
<td>Energiewandlungsmaschinen II</td>
</tr>
<tr>
<td>10.</td>
<td>Fahrzeuginformatik</td>
</tr>
<tr>
<td>11.</td>
<td>Gießgerechte Bauteilkonzeption und Prozessplanung</td>
</tr>
<tr>
<td>12.</td>
<td>Kontinuumsmechanik</td>
</tr>
<tr>
<td>13.</td>
<td>Laser- und Radarmesstechnik</td>
</tr>
<tr>
<td>14.</td>
<td>Nachrichtensystemtechnik</td>
</tr>
<tr>
<td>15.</td>
<td>Numerische Strömungsmechanik</td>
</tr>
<tr>
<td>16.</td>
<td>Polymerwerkstoffe II</td>
</tr>
<tr>
<td>17.</td>
<td>Prozess-Automatisierung von CFK-Strukturen in der Luftfahrtindustrie I</td>
</tr>
<tr>
<td>18.</td>
<td>Prozess-Automatisierung von CFK-Strukturen in der Luftfahrtindustrie II</td>
</tr>
<tr>
<td>19.</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>20.</td>
<td>Rheologie</td>
</tr>
<tr>
<td>21.</td>
<td>Schweißtechnische Fertigung 1</td>
</tr>
<tr>
<td>22.</td>
<td>Schweißtechnische Fertigung 2</td>
</tr>
<tr>
<td>23.</td>
<td>Seiltriebe</td>
</tr>
<tr>
<td>24.</td>
<td>Seminar Produktfindung / Produktplanung</td>
</tr>
<tr>
<td>25.</td>
<td>Spanende Fertigungstechnik 1</td>
</tr>
<tr>
<td>26.</td>
<td>Statistische Methoden im Ingenieurwesen</td>
</tr>
<tr>
<td>27.</td>
<td>Strömungsmechanik II</td>
</tr>
<tr>
<td>28.</td>
<td>Strömungsmesstechnik</td>
</tr>
<tr>
<td>29.</td>
<td>Technische Standardisierung / Normung</td>
</tr>
<tr>
<td>30.</td>
<td>Turbulente Strömungen</td>
</tr>
<tr>
<td>31.</td>
<td>Verarbeitungstechnik neuzeitlicher Werkstoffe für Maschinenbau und Verfahrenstechnik</td>
</tr>
<tr>
<td>32.</td>
<td>Verbrennungskraftmaschinen I</td>
</tr>
<tr>
<td>33.</td>
<td>Verbrennungskraftmaschinen II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester:</th>
<th>3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>1. Prof. Dr.-Ing. H. Schwarze</td>
</tr>
<tr>
<td></td>
<td>2. Dr.-Ing. Stalmann</td>
</tr>
<tr>
<td></td>
<td>3. Prof. Dr.-Ing. H. Ludanek</td>
</tr>
<tr>
<td></td>
<td>4. Prof. N. Müller</td>
</tr>
<tr>
<td></td>
<td>5. Frau Dr.-Ing. C. Minke</td>
</tr>
<tr>
<td></td>
<td>6. Jun.-Prof. Dr. Nina Gunkelmann</td>
</tr>
<tr>
<td></td>
<td>7. Frau C. Rebberleh</td>
</tr>
<tr>
<td></td>
<td>8. Dr.-Ing. H. Wiche</td>
</tr>
<tr>
<td></td>
<td>9. Dr.-Ing. H. Blumenthal</td>
</tr>
<tr>
<td></td>
<td>10. Dr.-Ing. F. Wolf</td>
</tr>
<tr>
<td></td>
<td>11. Prof. Dr.-Ing. Babette Tonn und Mitarbeiter</td>
</tr>
<tr>
<td></td>
<td>12. Prof. St. Hartmann</td>
</tr>
<tr>
<td></td>
<td>13. Prof. C. Rembe</td>
</tr>
<tr>
<td></td>
<td>14. Dr.-Ing. Georg Bauer</td>
</tr>
<tr>
<td></td>
<td>15. Prof. G. Brenner</td>
</tr>
<tr>
<td>16. Dr. Leif Steuernagel</td>
<td>17. Prof. Dr.-Ing. D. Meiners</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>18. Prof. Dr.-Ing. D. Meiners</td>
<td>19. Dr.-Ing. H. Wiche</td>
</tr>
<tr>
<td>20. Prof. G. Brenner</td>
<td>21. Dr.-Ing. A. Schram</td>
</tr>
<tr>
<td>24. Herr Dipl.-Ing. J. Langenbach</td>
<td>25. Prof. V. Wesling, Dr.-Ing. R. Reiter</td>
</tr>
<tr>
<td>26. Dr.-Ing. H. Mauch</td>
<td>27. Prof. G. Brenner</td>
</tr>
<tr>
<td>28. Dr. Anthony Gardner</td>
<td>29. Dr.-Ing. Bernd Hartlieb</td>
</tr>
<tr>
<td>30. Prof. G. Brenner</td>
<td>31. Dr.-Ing. R. Reiter</td>
</tr>
<tr>
<td>32. Prof. Dr.-Ing. H. Schwarze</td>
<td>33. Prof. Dr.-Ing. H. Schwarze</td>
</tr>
</tbody>
</table>

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflicht

Kreditpunkte: 10+2

Kompetenzen: Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Antriebstrang im Automobil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. H. Schwarze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Bachelorgrad</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Nach dem Bestehen der Prüfung sollen Hö rerInnen dieser Vorlesung in der Lage sein, die in der Vorlesung besprochenen Sachverhalte und Herangehensweisen selbständig auf technische und motorische Fragestellungen übertragen zu können. Dazu gehören im Einzelnen die Kenntnisse zur Auslegung unterschiedlicher Elemente im Antriebstrang im Automobil</td>
</tr>
</tbody>
</table>
| Inhalt: | 1. Der Antriebstrang
- Motor, Anfahrelemente, Getriebe
- Motor Kennfeld
- Testzyklus
- Fahrwiderstand
- Zugkraft-Geschwindigkeitsdiagramm
2. Anfahrelemente
- Kupplungen
- trockene und nasse Kupplung
- hydrodynamische Kupplungen
- Hydrodynamische Wandler
- Wandlerüberbrückungskupplungen
3. Getriebe
- Stufenwechselgetriebe
- Stufenlose Getriebe
4. Stufenwechselgetriebe
- Handschaltgetriebe
- Automatikgetriebe
- automatisierte Getriebe
5. Stufenlose Getriebe
6. Achsenantrieb Ausgleichsantriebe
7. Getriebesteuerung
8. Sonderkapitel
- Start-Stop-Automatik
- Schwungnutze
- Schwungrad-Starter-Generator |
| Studien-Prüfungsleistungen: | Prüfung: schriftlich oder mündlich in Abhängigkeit der Teilnehmerzahl
Kurzfragen- und Berechnungsteil (120 min.) oder mündlich 30 min. |
<p>| Medienformen: | Power Point |
| Literatur: | Skript |
| Bemerkungen: | Die Vorlesung findet als Blockvorlesung statt. |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Automobilproduktion heute - vom Einzelteil zur fertigen Karosse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Stalmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h, 28h Präsenzstudium, 62 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Umsetzungsmöglichkeiten von fertigungstechnischen sowie</td>
</tr>
<tr>
<td></td>
<td>produktionstechnischen Grundlagen innerhalb der Automobilindustrie kennen und anwenden können.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Allgemeine Herausforderungen des Karosseriebaus</td>
</tr>
<tr>
<td></td>
<td>2. Werkzeugherstellung für Karosserieeinzelseile – Auslegung,</td>
</tr>
<tr>
<td></td>
<td>Konstruktion, Bau</td>
</tr>
<tr>
<td></td>
<td>3. Die Blechteilfertigung im Presswerk – Auslegung, Mechanisierung, Logistik</td>
</tr>
<tr>
<td></td>
<td>4. Stofflicher metallischer Leichtbau im Automobilbau</td>
</tr>
<tr>
<td></td>
<td>5. Karosseriebau – vom Einzelteil bis zur fertigen Karosserie</td>
</tr>
<tr>
<td></td>
<td>6. Fügetechniken im Karosseriebau</td>
</tr>
<tr>
<td></td>
<td>7. Lasertechnik im Karosseriebau</td>
</tr>
<tr>
<td></td>
<td>8. Kunststofftechnik im Automobilbau</td>
</tr>
<tr>
<td></td>
<td>9. Karosseriebau – eine Herausforderung für die Qualitätssicherung</td>
</tr>
<tr>
<td></td>
<td>10. Formhärten – Herstellung höchstfester sicherheitsrelevanter Strukturbauteile</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen</td>
<td>Klausur (90 min, bei > 5 Teilnehmer) oder mündliche Prüfung (30 min, Einzelprüfung)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Power Point</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Automotive - Management und Technik in der Fahrzeugentwicklung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. H. Ludanek</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 28 h Präsenzstudium, 62 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundlagen Mathematik, Physik, Maschinenelemente, Werkstoffwissenschafen</td>
</tr>
</tbody>
</table>

| Medienformen: | Tafel, PowerPoint, Übungen, Repetitorium |

<p>| Literatur: | Bosch: Kraftfahrtechnisches Taschenbuch Vieweg Verlag, ISBN 3-528-23876-3 |
| | D. Dixius: Simultane Projektorganisation Ein Leitfaden für die Projektarbeit im Simultaneous Engineering Springer Verlag, ISBN 3-540-64547-0 |
| | Herrmann Mettig: Die Konstruktion schnelllaufender Verbrennungsmotoren De Gruyter Lehrbuch, ISBN 3-11 0039214 |
| Sonstiges | Je nach Teilnehmeranzahl kann am Ende des Semesters eine Exkursion zur Technischen Entwicklung der Volkswagen AG, Wolfsburg erfolgen. |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Apparative Anlagentechnik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. N. Müller</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS;</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Apparateelemente</td>
</tr>
</tbody>
</table>

Lernziele

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Einführung</td>
</tr>
<tr>
<td>2. Konstruktions- und Entwicklungsprozesse von Vt-Anlagen</td>
</tr>
<tr>
<td>3. Kostenfindung und -beeinflussung</td>
</tr>
<tr>
<td>4. Sicherheit und Zuverlässigkeit</td>
</tr>
<tr>
<td>5. Fließbilder</td>
</tr>
<tr>
<td>6. Rohrleitungen und Rohrleitungssysteme</td>
</tr>
<tr>
<td>7. Pumpen und Armaturen</td>
</tr>
</tbody>
</table>

Studienprüfungsleistungen: mündliche Prüfung (30 -45 Min.)

Medienformen: Tafel, PowerPoint, Übungen, Repetitorium

Literatur:
- Sattler u. Kasper; Verfahrenstechnische Anlagen; WILEY-VCH Verlag 2000
- Pahl; Beitz; Feldhusen; Grote; Konstruktionslehre ;Springer-Verlag 2002
- Klapp; Apparate- und Anlagentechnik; Springer-Verlag 1980
- Dietz; Konstruktion verfahrenst. Maschienen; Springer-Verlag 2000
- DIN EN 13480-3 Metallische industrielle Rohrleitung
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Apparative Anlagentechnik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Christine Minke</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehreform / SWS:</td>
<td>Vorlesung 2 SWS; Teilnehmer unbegrenzt, Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Apparative Anlagentechnik I</td>
</tr>
</tbody>
</table>

Lernziele

Inhalt:

1. Einführung in die Verfahrenstechnik
2. Apparate und Grundverfahren
3. Verfahrenstechnische Anlagen
4. R&I-Fließbild
5. Messen, Steuern, Regeln
6. Stoff- und Energiestrome
7. Maßstabsübertragung: Scale-up und Numberging-up
8. Betrieb und Instandhaltung chemischer Anlagen
9. Qualitätssicherung im Chemiebetrieb
10. Umweltschutz im Chemiebetrieb

Studien-Prüfungsleistungen: Klausur oder mündliche Prüfung

Medienformen: PowerPoint, Video, Handouts, Online-Quizfragen, Diskussion, Tutorien, Experiment, Exkursion

Literatur:

<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Basic principles of molecular dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. N. Gunkelmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Tutorium 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Vorausgesetzt werden die Kenntnisse der Vorlesungen Ingenieurmathematik und Physik.</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>- können atomistische Modellierungstechniken beschreiben und die allgemeinen Methode der Molekulardynamik skizzieren.</td>
</tr>
<tr>
<td></td>
<td>- können die interatomare Wechselwirkung in Metallen, Halbleitern, Keramiken und Biomolekülen erläutern und gegenüberstellen.</td>
</tr>
<tr>
<td></td>
<td>- sind in der Lage, die Verbindung zwischen thermodynamischen Eigenschaften (Temperatur, Druck) und atomistischer Dynamik aufzuzeigen.</td>
</tr>
<tr>
<td></td>
<td>- können wichtige Material-Eigenschaften aus atomistischen Simulationen ableiten.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Molekulardynamik: Interatomare Potentiale, Randbedingungen, Integratoren, Thermodynamische Ensembles, Thermo-/Barostate</td>
</tr>
<tr>
<td></td>
<td>- Molekularstatik: Energieminimierung, Defekte, Spannungsberechnung, elastische Konstanten</td>
</tr>
<tr>
<td></td>
<td>- Postprocessing: Berechnung von strukturellen Eigenschaften und Eigenschaften wie z.B. Diffusionskoeffizienten, Viskosität und Wärmeleitfähigkeit</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Prüfungsform: bis 35 Teilnehmer*innen mündliche Prüfung, sonst Klausur</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer, Rechnervorführungen</td>
</tr>
<tr>
<td>Bemerkungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>
Lehrveranstaltung / Teilmodul: Einführung in den gewerblichen Rechtsschutz, insbesondere Patentrecht

Dozent(in): Frau C. Rebbereh

Sprache: Deutsch

Lehrform / SWS: 2 SWS, kombinierte Vorlesung mit Übung

Arbeitsaufwand: 90 h; 28 h Präsenz- und 62 h Selbststudium

Kreditpunkte: 3

Voraussetzungen: keine

Lernziele: Möglichkeiten und Risiken infolge gewerblicher Schutzrechte (Patente, Gebrauchsmuster, Marken, Geschmacksmuster) kennen, verwandte Rechtsgebiete zugunsten und zum Nachteil des eigenen Unternehmens und eigener Entwicklungen anwenden

Studien- / Prüfungsleistungen: Teilnahmebescheinigung, Klausur (60 Minuten) (oder nur ausnahmsweise bei sehr geringer Teilnehmerzahl mündliche Prüfung)

Medienformen: Praktische Beispiele und Diskussionen zur Stofferarbeitung, Tafel, PowerPoint-Präsentation

Literatur elektronische Unterlagen zur Vorlesung
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Einführung in die Fügetechnologie des Lötnens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. H. Wiche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 42 h Präsenzstudium, 48 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Bachelor</td>
</tr>
</tbody>
</table>

Inhalt:	Einführung
	Metallurgische Grundlagen
	Lotwerkstoffe für das
	-Weichlöten
	-Hartlöten
	-Hochtemperaturlöten
	Flussmittel
	Lötverfahren
	Anwendungsfelder und -beispiele
	Gestaltung und Prüfung von Lötverbindungen

<p>| Studien-Prüfungsleistungen | Klausur (90 min) oder mündliche Prüfung (45 min Einzelprüfung, bei < 10 Teilnehmer) |
| Medienformen: | Vorlesungspräsentation |
| Literatur: | Vorlesungsskript |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul:</th>
<th>Energiewandlungsmaschinen II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. H. Blumenthal</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS, Übung 1 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium; 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Strömungsmechanik, Thermodynamik, Mechanik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Einführung: Kennzeichen, Einteilung, Vergleich mit Kolbenmaschinen, Bauarten</td>
</tr>
<tr>
<td></td>
<td>2. Theoretische Grundlagen: Gesetze der Strömungslehre, Beschaufelung, Geschwindigkeitsplan, Eulersche Turbinengleichung, Thermodynamik der Strömungsmaschinen, Beschaufelung in Gitter, Stufe und Maschine, Kenngrößen, Cordier Diagramm</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Klausur (90 min.) bestehend aus Kurzfragen- und Berechnungsteil</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint-Präsentation</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td></td>
<td>Carl Pfleiderer, Hartwig Petermann, Strömungsmaschinen Springer-Verlag</td>
</tr>
<tr>
<td></td>
<td>W. Beitz und K.-H. Küttner, Dubbel, Springer-Verlag</td>
</tr>
<tr>
<td></td>
<td>Willi Bohl, Strömungsmaschinen, Berechnung und konstruktion, Vogel</td>
</tr>
<tr>
<td></td>
<td>Willi Bohl, Wolfgang Elmendorf, Strömungsmaschinen 1 Aufbau und Wirkungsweise, Vogel</td>
</tr>
<tr>
<td>Lehrveranstaltung Teilmodul</td>
<td>Fahrzeuginformatik</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. F. Wolf</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden sollen die spezifischen Anforderungen an den Softwareentwicklungsprozess für eingebettete Systeme im Fahrzeug kennenlernen und besonders für die sicherheitskritischen Aspekte sensibilisiert werden. Weiterhin sollen die Studierenden mit den technischen Grundlagen der verwendeten Komponenten vertraut gemacht werden.

Inhalt:

- Grundlagen der Fahrzeuginformatik
- Systemübersicht Elektrische Lenkung
- Funktionalität der elektrischen Lenkung
- Architektur sicherheitskritischer Softwaresysteme
- Anforderungen an Entwicklungsprozesse
- Softwareentwicklung für sicherheitskritische Systeme
- Softwaretest für sicherheitskritische Systeme
- Beispiele aus der Praxis

Studien-Prüfungsleistungen:

Festlegung von Prüfungsform (Klausur oder mündliche Prüfung) und Dauer gemäß der geltenden Prüfungsordnung, in der Regel mündliche Prüfung mit einer Dauer von 30 min

Medienformen:

Skript, Folien

Literatur:

Literatur wird in der Vorlesung bekanntgegeben
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Gießgerechte Bauteilkonzeption und Prozessplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Babette Tonn und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>3 SWS 2V/1Ü;</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundlagen des Maschinenbaus sowie werkstofftechnische Grundlagen</td>
</tr>
</tbody>
</table>
| Inhalt: | 1) Grundlagen der gießgerechten Bauteilkonstruktion
- Topologieoptimierung
- Gießgerechtes Konstruieren
2) Grundlagen des Werkstoffdesigns
- thermodynamische Berechnungen
- Optimierung gießtechnologischer Eigenschaften
- Gefüge- und Eigenschaftsentwicklung
3) Grundlagen der Prozessplanung
4) Betriebswirtschaftliche Aspekte
5) Moderne Verfahren der Gießereitechnik
6) Exkursion |
| Studien-Prüfungsleistungen | Klausur oder mündliche Prüfung, Dauer: 1 h |
| Medienformen: | Powerpoint, Tafel |
R. Richter: Form- und gießgerechtes Konstruieren, Deutscher Verlag für Grundstoffindustrie, 1970
Hentze, H. Gestaltung von Gußstücken, Springer-Verlag, 1969
Hänchen, R. Gegossene Maschinenteil - Berechnung und Gestaltung, Carl Hanser Verlag, 1964
Konstruieren mit Gusswerkstoffen, Herausgeber: VDI und VDG, Giesserei-Verlag, 1966
Fritz, A.-H.; Schulze, G. Fertigungstechnik, VDI-Verlag, 1989
Nachtingall, W. Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler, Springer-Verlag, 2002
Beitz, W.; Grote, K.-H. Dubbel - Taschenbuch für den Maschinenbau, Springer-Verlag, 2004 |

Lehrveranstaltung / Teilmodul: Kontinuumsmechanik
Semester: 2.
Dozent(in): Prof. St. Hartmann
Sprache: Deutsch
Lehrform / SWS: Vorlesung/Übung 3V/1Ü SWS, Teilnehmer unbegrenzt
Arbeitsaufwand: 150 h; 56 h Präsenzstudium, 94 h Selbststudium
Kreditpunkte: 5
Voraussetzungen: Technische Mechanik I-III, Mathematik I-III

<table>
<thead>
<tr>
<th>Lernziele</th>
<th>Die Studierenden sollten nach Absolvierung dieser Veranstaltungen folgende Ziele erreicht haben:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Sie können das Gateaux-Differential für unterschiedlichste Tensorfunktionen anwenden und wissen auch, wie man die Ketten- und Produktregel anwendet.</td>
</tr>
<tr>
<td></td>
<td>- Sie haben Kenntnisse über die Eigenschaften des Gradienten, der Divergenz, Rotation und des Laplace-Operators</td>
</tr>
<tr>
<td></td>
<td>- Sie erhalten die Befähigung zum Lesen von Lehrbüchern und Fachliteratur der Tensorrechnung und verstehen den Zusammenhang zu den Grundlagenfächern der Technischen Mechanik.</td>
</tr>
<tr>
<td></td>
<td>- Sie können die Grundlagen der Kinematik beliebiger Deformationen wiedergeben und für einfache Deformationen Verzerrungen sowie Hauptverzerrungen ausrechnen.</td>
</tr>
<tr>
<td></td>
<td>- Sie können die Bilanzgleichungen in materieller und räumlicher Darstellung für Masse, Impuls und Drehimpuls herleiten und interpretieren.</td>
</tr>
<tr>
<td></td>
<td>- Sie kennen die Bilanzgleichungen für Energie und Entropie.</td>
</tr>
<tr>
<td></td>
<td>- Sie sind fähig Theorieteile von Handbüchern der Methode der finiten Elemente für große Deformationen zu verstehen und sich in vertiefenden Grundlagen einzuarbeiten.</td>
</tr>
<tr>
<td></td>
<td>- Sie kennen die Unterschiede der Festkörper- und Strömungsmechanik.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Tensoralgebra:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geometrische Vektoren (Skalar-, Vektor- und Spatprodukt)</td>
</tr>
<tr>
<td></td>
<td>Tensoren 2-ter Stufe und deren Komponentendarstellung</td>
</tr>
<tr>
<td></td>
<td>Spezielle Tensoren</td>
</tr>
<tr>
<td></td>
<td>Eigenwertproblem</td>
</tr>
<tr>
<td></td>
<td>Tensoren höherer Stufe</td>
</tr>
<tr>
<td></td>
<td>Tensoranalyse:</td>
</tr>
<tr>
<td></td>
<td>Gateaux- und Frechet-Ableitung</td>
</tr>
<tr>
<td></td>
<td>Differentialoperatoren (Divergenz, Rotation, Gradient)</td>
</tr>
<tr>
<td></td>
<td>Nabla- und Laplace-Operator</td>
</tr>
<tr>
<td></td>
<td>Integralsätze</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Kontinuumsmechanik:</td>
</tr>
<tr>
<td></td>
<td>Beschreibung der Bewegung</td>
</tr>
<tr>
<td></td>
<td>Kinematische Größen: Deformations- und Geschwindigkeitsgradient, Verzerrungstensoren</td>
</tr>
<tr>
<td></td>
<td>Spannungstensoren bei großen Deformationen</td>
</tr>
<tr>
<td></td>
<td>Bilanzgleichungen der Mechanik</td>
</tr>
<tr>
<td></td>
<td>Materialmodelle für Fluide und Festkörper</td>
</tr>
</tbody>
</table>

<p>| Studien-Prüfungsleistungen: | Klausur oder mündliche Prüfung |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Tafel, Folien</th>
</tr>
</thead>
</table>
| Literatur: | Skriptum zur Vorlesung
Itskov: Tensor algebra and tensor analysis for engineers, Springer, 2007
Chadwick: Continuum Mechanics, Dover Publ. 1999 |
Lehrveranstaltung / Teilmodul: Laser- und Radarmesstechnik

Semester: 3

Dozent(in): Prof. Rembe

Sprache: Deutsch

Lehrform / SWS: Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt

Arbeitsaufwand: 120 h; 42 h Präsenzstudium, 78 h Selbststudium

Kreditpunkte: 4

Voraussetzungen: Grundlegende Kenntnisse in Messtechnik und Signalübertragung werden empfohlen

Inhalt:
1. Elektromagnetische Strahlung
2. Wechselwirkung mit Materie
3. Radartechnik
4. Laserphysik und Lasertechnik
5. Elektrooptische Komponenten
6. Detektoren
7. Detektionsmethoden
8. Abstands- und Geschwindigkeitsmessung
9. Radar- und Lasersensoren

Studien-Prüfungsleistungen: Mündlich Prüfung (ca. 30 min) oder Klausur ab 35 Teilnehmer

Medienformen: Folien, Übungsaufgaben incl. Lösungen als Textdokumente, Tafel

Literatur:
- Richard Feynman, Vorlesungen der Physik Elektromagnetismus und Struktur der Materie: Oldenbourg Verlag, 2007
- Jürgen Göbel, Radartechnik, VDE Verlag, 2011
- Amon Yariv, Pochi Yeh, Photonics: Optical Electronics in Modern
<table>
<thead>
<tr>
<th>Title</th>
<th>Author, Publisher, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications, Oxford University Press, 2006</td>
<td></td>
</tr>
<tr>
<td>Bahaa Saleh, Malvin Teich, Grundlagen der Photonik, John Wiley, 2008</td>
<td></td>
</tr>
<tr>
<td>Manfred Hugenschmidt, Lasermesstechnik, Springerverlag, 2006</td>
<td></td>
</tr>
<tr>
<td>Wolfgang Demtröder, Laserspektroskopie 1, Springerverlag, 2014</td>
<td></td>
</tr>
<tr>
<td>Wolfgang Demtröder, Laserspektroskopie 2, Springerverlag, 2013</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Nachrichtensystemtechnik</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Semester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Georg Bauer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundlagen der Nachrichtentechnik empfohlen</td>
</tr>
</tbody>
</table>

Lernziele

Inhalt:

10. Überblick
11. Pulscodemodulation
12. Digitale Basisbandübertragung
13. Darstellung von Bandpasssignalen im äquivalenten Tiefpassbereich
14. Digitale Modulationsverfahren
15. Kanalkodierung
16. Übertragungskanäle
17. Vielfachzugriffsverfahren

Studien-Prüfungsleistungen:

Mündlich Prüfung (ca. 30 min) oder Klausur ab 35 Teilnehmer

Medienformen:

Tafel, Folien, Beamer, Vorlesungsskript, Übungsaufgaben incl. Lösungen

Literatur:

- Jürgen Lindner, „Informationsübertragung. Grundlagen der Kommunikationstechnik“, Berlin, Heidelberg, New York: Springer Verlag, 2005
Lehrveranstaltung / Teilmodul
- Numerische Strömungsmechanik

Semester:
- 2.

Dozent(in):
- Prof. G. Brenner

Sprache:
- Deutsch

Lehrform / SWS:
- Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt

Arbeitsaufwand:
- 120 h; 42 h Präsenzstudium inkl. Übung, 78 h Selbststudium

Kreditpunkte:
- 4

Voraussetzungen:
- Vorausgesetzt werden die Kenntnisse der Vorlesungen Ingenieurmathematik und Physik sowie Strömungsmechanik

Lernziele:
- Die Studierenden...
 - kennen und verstehen die besprochenen Methoden zur Messung von Strömungen
 - sind in der Lage, für vorliegende Strömungen geeignete Messinstrumente zu wählen und ihren Einsatz zu skizzieren
 - verstehen und beschreiben die Funktionsweise der Messinstrumente und der zugrunde liegenden Messprinzipien
 - erläutern die Einflussfaktoren, denen Messergebnisse der besprochenen Verfahren und Instrumente unterliegen können

Inhalt:
1. Erhaltungsgleichungen der Kontinuumsmechanik, Klassifizierung aus mathematischer Sicht, Rand- und Anfangsbedingungen
2. Finite Differenzen Methode, Prinzip der FDM, Genauigkeitsfragen, Anwendung zur Lösung einer linearen skalaren Transportgleichung in ein- und zwei Dimensionen
3. Lösung linearer Gleichungssysteme, Direkte Löser (TDMA, LU-Zerlegung), iterative Löser (Unvollständige LU), konjugierte Gradienten Verfahren
4. Finite Volumen Methode, Prinzip der FVM, Diskretisierung von skalaren konvektions-diffusions Gleichungen, gebräuchliche Diskretisierungspraktiken
5. Instationäre Strömungen, Explizite und implizite Verfahren, Einschritt/Mehrschritt Verfahren,
6. Eigenschaften von iterativen Algorithmen, Stabilität, Konvergenz, Konsistenz (Satz von Lax), Konservativität, Beschränktheit
7. Berechnungsverfahren für elliptische Probleme, Möglichkeiten der Druck-Geschwindigkeitskopplung, SIMPLE Verfahren und Varianten, versetzte und nicht versetzte Gitter
8. Möglichkeiten der Simulation / Modellierung der Turbulenz Schließungsannahmen, Transportmodelle für Turbulenzgrößen, Wandmodellierung
9. Gittergenerierung (Preprocessing), Einbindung in andere CA Techniken, Multigrid, Parallelverarbeitung und Hochleistungsrechnen, Visualisierung/Postprocessing von numerischen Daten

Studien-Prüfungsleistungen:
- Prüfungsform: bis 35 Teilnehmer*innen mündliche Prüfung, sonst Klausur

Medienformen:
- Tafel, Folien

Literatur:
1. Eigenes Skript
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Polymerwerkstoffe II – Duroplastische Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Dr. Leif Steuernagel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch/englisch (auf Wunsch der Studierenden)</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Teilnehmer unbegrenzt, Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Lernziele
Den Studierenden wird Wissen über duroplastische Polymerwerkstoffe, Fasern und deren Verstärkungswirkung, textile Halbzeuge sowie die Herstellung und Verarbeitung von faserverstärkten Polymerwerkstoffen (FKV) vermittelt, um deren Eigenschaften zu verstehen und für Bauteilanwendungen einzusetzen sowie mit anderen Materialien z.B. Metallen vergleichen zu können.

Inhalt:
1. Einführung in die faserverstärkten Kunststoffe (FKV)
 Wirkungsweise
 Eigenschaften
2. Vernetzte duroplastische Polymerwerkstoffe
3. Grundlagen der Duroplaste
 Pheno- und Aminoplaste
 Epoxidharze
 ungesättigte Polyesterharze
 Vinylesterharze
4. Fasern
 Naturfasern
 Chemiefasern
 i. Glasfasern
 ii. Aramidfasern
 iii. Kohlenstofffasern
 iv. Weitere Faserarten
5. Textile Halbzeuge
 Fadenhalbzeuge (Band, Garn, Zwirn)
 Flächenhalbzeuge (Vlies, Gelege, Gewebe, Gestrick, Geflecht)
 Eigenschaften textiler Halbzeuge
6. Herstellung und Verarbeitung von Faser-Kunststoff-Verbunden
7. Eigenschaften von Faser-Kunststoff-Verbunden
 Zugeigenschaften
 Druckeigenschaften
 Allgemeine Eigenschaften
 Vergleich mit anderen Konstruktionswerkstoffen

Studien-Prüfungsleistungen:
mündliche Prüfung über 30 Minuten oder Klausur

Medienformen:
Abrufbare Skripte, Tafel, Präsentationen

Literatur:
Michaeli: Einführung in die Technologie der Faserverbundwerkstoffe, Carl Hanser Verlag, München Wien
Ehrenstein: Faserverbund-Kunststoffe, Carl Hanser Verlag, München Wien
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Prozess-Automatisierung von CFK-Strukturen in der Luftfahrtindustrie I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. D. Meiners</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Vorlesung versetzt die Studierenden in die Lage, in Serie durchgeführte Produktionsabläufe für Hochleistungsfaser-verstärkte Materialien fachlich umzusetzen und das Materialverständnis auf den Produktionsschritt übertragen. Hierbei wird systematisches Analysedenken gefördert, um am jeweiligen Produkt eine Rückkopplung zwischen Material, Prozess, Produktgeometrie und Wirtschaftlichkeit zu synthetisieren.</td>
</tr>
</tbody>
</table>
| Inhalt: | • Einführung in die Luftfahrtindustrie (Prognose, Marksegmente, Soziale Arbeitskomponenten, Materialeinsatz, Entwicklungs-potentiale)
 | • Fertigungssysteme für großflächige CFK-Komponenten (Materialsysteme, Konstruktions-/Fertigungsprinzipien, Prozessfolge Teilefertigung, Montageprozess)
 | • Fertigungsprozesse für großflächige 3D-Komponenten (Materialsysteme, Konstruktionsprinzipien, Prozess Teilefertigung, Prozess Montage) |
| Studien-Prüfungsleistungen: | 90 minütige Klausur |
| Medienformen: | Folien, Filme, Vorlesungsskript |
| Literatur: | Allgemeine Literatur zu Faserverbundwerkstoffen:
 | Flemming, Ziegmann, Roth: Faserverbundbauweisen - Fasern und Matrices, Springer-Verlag, 1995
 | Flemming, Ziegmann, Roth: Faserverbundbauweisen - Fertigungsverfahren mit duroplastischer Matrix, Springer-Verlag
Lehrveranstaltung / Teilmodul | Prozess-Automatisierung von CFK-Strukturen in der Luftfahrtindustrie II
---|---
Semester: | 2.
Dozent(in): | Prof. Dr.-Ing. D. Meiners
Sprache: | Deutsch
Lehrform / SWS: | Vorlesung 3 SWS; Teilnehmer unbegrenzt
Arbeitshaftung: | 120 h; 42 h Präsenzstudium, 78 h Selbstdstudium
Kreditpunkte: | 4
Voraussetzungen: | Keine

Lernziele | Die Vorlesung versetzt die Studierenden in die Lage, in Serie durchgeführte Produktionsabläufe für Hochleistungsfaser-verstärkte Materialien fachlich umzusetzen und das Materialverständnis auf den Produktionsschritt übertragen. Hierbei wird systematisches Analysedenken gefördert, um am jeweiligen Produkt eine Rückkopplung zwischen Material, Prozess, Produktgeometrie und Wirtschaftlichkeit zu synthetisieren.

Inhalt: | Injektionsverfahren im Flugzeugbau (Materialsystem, RTM-Prozess, VAP-Prozess, VARI-Prozess, RFI-Prozess)
| • Hybridsysteme (Materialsysteme, Materialkombinationssysteme und Bauweisen)
| • Lean Manufacturing in der CFK-Fertigung (Schlüsselmerkmale, Organisationssysteme)

Studien-Prüfungsleistungen: | 90 minütige Klausur

Medienformen: | Folien, Filme, Vorlesungsskript

Literatur: | Allgemeine Literatur zu Faserverbundwerkstoffen:
| Flemming, Ziegmann, Roth: Faserverbundbauweisen - Fasern und Matrices, Springer-Verlag, 1995
| Flemming, Ziegmann, Roth: Faserverbundbauweisen - Fertigungsverfahren mit duroplastischer Matrix, Springer-Verlag
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Qualitätsmanagement I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. H. Wiche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 3SWS, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 42 h Präsenzstudium, 48 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden kennen die Grundzüge der Qualitätsförderung und können sie erklären. Sie sind in der Lage Qualitätsleitsätze, Qualitätsmethoden und Qualitätswerkzeuge zu definieren. Sie kennen die klassischen Qualitätswerkzeuge sowie die Qualitätsmanagementwerkzeuge und können beurteilen, welche Werkzeuge für welche Problemlösungen eingesetzt werden. Sie wissen, wie die Methoden (SPC, FMEA, QF, Benchmarking usw.) ablaufen und wann sie eingesetzt werden. Sie sind in der Lage, die Vorgehensweisen in kontinuierlichen Verbesserungsprozessen zu beschreiben und die vorgestellten Hilfsmittel anzuwenden.

Inhalt:

- Einführung in das Qualitätsmanagement, Qualitätssicherung
- QM-Werkzeuge für TQM
- 7 Qualitätswerkzeuge (Fehlersammelliste, Graphiken, Pareto-Analyse, Histogramm, Ursachen-Wirkungsdiagramm, Korrelationsdiagramm)
- 7 Qualitätsmanagementwerkzeuge (Beziehungsdiagramm, Portfolio, Baumdiagramm, Affinitätsdiagramm, Netzplan, Prozessentscheidungsdiagramm, Matrixdiagramm)
- Qualitätsmanagementmethoden
- Statistische Prozesslenkung mit Regelkarten (Maschinen-, Prozessfähigkeit)
- Fehler-Möglichkeits- und Einflussanalyse (FMEA-Aufbau und -Ablauf)
- Quality Function Deployment (QFD, House of Quality)
- Kontinuierlicher Verbesserungsprozess (KVP)
- Kreativitätstechniken
- Benchmarking
- Balanced Scorecard

Studien-Prüfungsleistungen

Klausur (90 min) oder mündliche Prüfung (45 min Einzelprüfung, bei < 10 Teilnehmer)

Medienformen:

Vorlesungsskript, Vorlesungspräsentation

Literatur:

/1/ Geiger, W., W. Kotte: Handbuch Qualität; Vieweg – 2005
/2/ Masing, W.: Handbuch Qualitätsmanagement; Hanser Verlag 5. Auflage
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Rheologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Gunther Brenner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>2 SWS V; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 28 h Präsenzstudium und Übung, 62 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Kenntnisse in TM I und II und Strömungsmechanik I</td>
</tr>
</tbody>
</table>

Lernziele

<table>
<thead>
<tr>
<th>Die Studierenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>- können Stoffe / Werkstoffe anhand ihres Deformationsverhaltens bzw. Fließverhaltens klassifizieren</td>
</tr>
<tr>
<td>- können die Bedeutung dieser Eigenschaften für Verarbeitungsprozesse in Verfahrenstechnik, Medizintechnik, Pharmazie, Petrochemie oder Kunststofftechnik erläutern</td>
</tr>
<tr>
<td>- verstehen qualitativ die Ursachen für das komplexe Fließverhalten</td>
</tr>
<tr>
<td>- können kinematische Grundlagen zur mathematischen Beschreibung der Deformation bzw. des Fließens erläutern</td>
</tr>
<tr>
<td>- kennen empirische Modelle zur Quantifizierung des Fließverhalten und können deren Grenzen aufzeigen</td>
</tr>
<tr>
<td>- kennen Begriffe wie Newtonsches Fließgesetz, Scherentzähung, Strukturviskosität, Tixotropie und können diese im Kontext der Rheologie erklären</td>
</tr>
<tr>
<td>- können mechanisch-rheologische Ersatzmodelle zur Quantifizierung des Fließverhaltens aufstellen und die resultierenden gewöhnlichen DGLn lösen bzw. diskutieren</td>
</tr>
<tr>
<td>- können typische Strömungsphänomene aus rheologischer Sicht deuten</td>
</tr>
<tr>
<td>- kennen die Wirkung von Normalspannungseffekten in Flüssigkeiten, verstehen deren technische Auswirkungen und können konstruktive Maßnahmen für Verarbeitungsprozesse bewerten</td>
</tr>
</tbody>
</table>

Inhalt:

<table>
<thead>
<tr>
<th>1 Einführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Einteilung der Rheologie</td>
</tr>
<tr>
<td>1.2 Einteilung von Materialien anhand des Fließverhaltens</td>
</tr>
<tr>
<td>2 Makrorheologie (Phänomenologische Rheologie)</td>
</tr>
<tr>
<td>2.1 Kinematik, Spannungstensor, Deformationstensor</td>
</tr>
<tr>
<td>2.2 Grundgleichungen der Strömungsmechanik</td>
</tr>
<tr>
<td>2.3 Einfache Materialgesetze, Newtonsche Fluide</td>
</tr>
<tr>
<td>2.4 Nichtlineare Fließgesetze</td>
</tr>
<tr>
<td>2.5 Empirische Stoffgesetze</td>
</tr>
<tr>
<td>2.6 Modellrheologie</td>
</tr>
<tr>
<td>2.7 Lineare und Nichtlineare Viskoelastizität</td>
</tr>
<tr>
<td>3 Mikrorheologie und Strukturmechanik</td>
</tr>
<tr>
<td>3.1 Aufbau der Materie</td>
</tr>
<tr>
<td>3.2 Rheologie von Kunststoffen</td>
</tr>
<tr>
<td>4 Rheometrie</td>
</tr>
<tr>
<td>4.1 Bestimmung von Fließeigenschaften</td>
</tr>
<tr>
<td>4.2 Viskosimeter für Scherviskosität, Bauarten und Messprinzip</td>
</tr>
<tr>
<td>4.3 Messung von Dehnviskosität und Normalspannungen</td>
</tr>
<tr>
<td>5 Angewandte Rheologie</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>5.1 Barus und Weissenberg Effekt</td>
</tr>
<tr>
<td>5.2 Suspensionen</td>
</tr>
<tr>
<td>5.3 Verarbeiten von Kunststoffen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsform: bis 35 Teilnehmer*innen mündliche Prüfung, sonst Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Tafel, Folien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
</tbody>
</table>

Voraussetzungen:

Inhalt:

- Qualitätssicherung in der Fertigung
 - Qualitätsmanagement Grundsätze
 - Qualitätssicherung von Schweißkonstruktionen
 - Prozessintegrierte Qualitätssicherung
 - Messdatenerfassung zur Qualitätssicherung
 - Zerstörungsfreie Schweißnahtprüfungen
- Konzeption/Planung einer Fertigung für Schweißtechnische Erzeugnisse
- Berücksichtigung von Arbeitssicherheitsvorschriften in der Fertigung
- Wirtschaftliche Kalkulationsmodelle in der Fertigung
- Reparatur und Instandsetzung von Schweißkonstruktionen

Studien-Prüfungsleistungen:

Mündliche Prüfung (45 min, Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer)

Medienformen:

Powerpoint Präsentation

Literatur:
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Schweißtechnische Fertigung 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. A. Schram</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 28 h Präsenzstudium, 62 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
</tbody>
</table>

Voraussetzungen:

Lernziele

Inhalt:

Moderne Konstruktionen in Leichtmetallbauweise
- Allgemeiner Ingenieurbau
- Architektur
- Fahrzeugbau
- Behälter- und Apparatebau
- Sonstige Einsatzbereiche
Herstellung, Eigenschaften und Verarbeitung der Leichtmetalle
- Allgemeine Grundlagen
- Magnesiumwerkstoffe
- Titan
- Aluminium

Studien-Prüfungsleistungen:
Mündliche Prüfung (45 min Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer)

Medienformen:
Powerpoint Präsentation

Literatur:
Skript
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Seiltriebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Armin Lohrengel, Herr Dipl.-Ing. Roland Verreet</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>3 SWS 2V/1 Ü; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium und Übung, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

Lernziele
Nachdem die Studierenden das Modul erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:
- Besonderheiten und Einzelteile der Seiltriebe zu benennen und zu bestimmen
- Schadensfälle zu analysieren, einzuordnen und zu beurteilen,
- Seiltriebe sachgerecht auszuwählen und zu entwickeln
- in Teamarbeit innerhalb einer vorgegebenen Frist ein fachspezifisches Problem zu analysieren und Lösungen zu konfigurieren,
- das Ergebnis in angemessener Form schriftlich darzustellen,
- die einzelnen Arbeitsschritte zu planen, zu organisieren und durchzuführen.

Inhalt:
- Geschichte des Drahtseils
- Drahtseile für mehrlagig bewickelte Seiltrommeln
- Seilendverbindungen
- Berechnung der Lebensdauer von laufenden Drahtseilen
- Drahtseile für Krane
- Analyse der Biegewechselverteilung
- Inspektion von Drahtseilen
- Drehverhalten von Drahtseilen
- Schadensfälle an Drahtseilen

Studien-Prüfungsleistungen
Klausur, Dauer 60 Minuten und schriftliche Ausarbeitung einer Projektaufgabe zu bearbeiten in 3 er Teams

Medienformen:
Skript, Tafel, Folien

Literatur:
Literaturhinweise in der Vorlesung
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Seminar Produktfindung / Produktplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>3.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dipl.-Ing. J. Langenbach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>2 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 10h Präsenzstudium, 110h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Technisches Zeichnen sowie Konstruktionslehre wünschenswert</td>
</tr>
</tbody>
</table>

Lernziele

Nachdem die Studierenden das Modul erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:
- Begriffe und Methoden der Produktplanung zu bennen und anzuwenden
- Die verschiedenen Methoden einzuordnen, zu vergleichen, zu erklären und präsentieren
- In Teamarbeit die Lösung einer typischen Aufgabenstellung für die Produktplanung (Fallstudie) planen und umsetzen
- In der Teamarbeit die Methoden der Produktplanung auswählen und auf die Fallstudie übertragen
- Die Ergebnisse der Fallstudie zu präsentieren und zu diskutieren sowie schriftlich zu dokumentieren.

Inhalt:

Es werden Methodiken zu den folgenden Themen vermittelt:
- Innovationsmanagement
- Problemdefinition
- Synthese
- Prototyping und Storytelling
- Testen
-
Ferner werden folgende Sozialkompetenzen adressiert:
- Arbeiten im Team
- Präsentationstechniken
- Selbstandigkeit

Studien-Prüfungsleistungen

Präsentation einzelner Methoden (Einzelleistung)
Präsentation und Bericht der Fallstudie (Gruppenleistung)

Medienformen:

- Präsentationen
- Foam- und Whiteboards, Pinnwände, Videos
- Prototypen
- Alles was Studenten umsetzen

Literatur:

- Skript und Methodenblätter Seminar Produktfindung / Produktplanung
- Feldhusen et. al.: Pahl/Beitz Konstruktionslehre; Methoden und Anwendung; 8. Aufl., Springer-Verlag, 2013
- Ehrlenspiel, Klaus; Meerkamm, Harald: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit. 5. Aufl. München
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Spanende Fertigungstechnik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. V. Westling, Dr.-Ing. R. Reiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden kennen die grundlegenden werkstoffmechanischen Vorgänge und Mechanismen bei der Spanentstehung. Sie sind mit den einwirkenden Verschleißmechanismen an Werkzeugen vertraut, können die Eigenschaften der Schneidwerkstoffe darstellen und klassifizieren sowie die Einflussmöglichkeiten von Hilfsstoffen wie den Kühl- und Schmierstoffen abschätzen. Sie können Standzeiten, Zerspankräfte und Zerspanleistungen werkstoff- und zerspanparameterabhängig berechnen.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>1. Einleitung</td>
<td></td>
</tr>
<tr>
<td>2. Grundlagen der Zerspanung: Flächen, Schneiden und Ecken am Schneidekeil, Bezugsebenen, Winkel am Schneidekeil, Eingriff von Werkzeugen</td>
<td></td>
</tr>
<tr>
<td>3. Spanbildung: Begriffsbestimmung, Zonen der mikrogeometrischen Spanentstehung, Beschreibung und Einteilung der Spanentstehung, Statistische Kenngrößen der Spanbildung, Spanformen</td>
<td></td>
</tr>
<tr>
<td>4. Verschleiß: Beanspruchung des Schneidekeils, Verschleiß</td>
<td></td>
</tr>
<tr>
<td>6. Schneidstoffe: Anforderungen an Schneidstoffe, Einteilung der Schneidstoffe, Die Schneidstoffe, Zusammenstellung der Eigenschaften der Schneidstoffe, Schleifstoffe</td>
<td></td>
</tr>
<tr>
<td>9. Oberflächen- und Randzoneneigenschaften: Grundlagen, Oberflächen- und Randzonenausbildung beim Drehen</td>
<td></td>
</tr>
<tr>
<td>10. Optimierung: Optimierungsziel, Optimierung der Schnittwerte, Schnittwertgrenzen und Schnittwertermittlung</td>
<td></td>
</tr>
<tr>
<td>11. Ausblick</td>
<td></td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Mündliche Prüfung (45 min, Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint Präsentation</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript König: "Fertigungsverfahren Band 1, 2", VDI Verlag, Düsseldorf 1990</td>
</tr>
<tr>
<td></td>
<td>Tschätsch: "Handbuch spanende Formgebung - Fachbuch Fertigungstechnik", Hoppenstedt Technik Tabellen Verlag, Darmstadt 1988</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Statistische Methoden im Ingenieurwesen</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. H. Mauch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Blockveranstaltung, Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden kennen Grundbegriffe und Kenngrößen der Statistik. Die Studierenden benutzen die Grundlagen der Wahrscheinlichkeitsrechnung und wenden statistische Methoden am Beispiel der Betriebsfestigkeit an</td>
</tr>
</tbody>
</table>
| Inhalt: | 1. Einführung in die Statistischen Methoden
2. Stichprobentheorie
3. Grundlagen der Wahrscheinlichkeitsrechnung
4. Schätzen von Verteilungen
5. Konfidenzintervalle und Testverfahren
6. Varianzanalyse
7. Bewertung geringer Stichprobenumfänge |
<p>| Studien-Prüfungsleistungen: | Klausur (105 Minuten) |
| Medienformen: | Tafel, PowerPoint-Folien |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Strömungsmechanik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Gunther Brenner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>2 SWS V / 1 SWS Ü; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium und Übung, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Vorausgesetzt werden die Kenntnisse der Vorlesungen Mechanik, Ingenieurmathematik und Strömungsmechanik 1</td>
</tr>
</tbody>
</table>

Lernziele

den behandelten Themen
lösen in den Übungen selbständig bzw. in Zusammenarbeit mit
Kommiliton*innen theoretische und anwendungsorientierte Fragestellungen
der Strömungsmechanik
verbessern ihre Lern- und Arbeitstechnik sowie Vortragsweise durch
Präsentation der eigenständig bearbeiteten Übungsaufgaben
steigern ihre Kooperationsbereitschaft sowie ihre Fähigkeit zum
Zeitmanagement, Kommunikation und Organisation in der Gruppe durch
teamorientierte Bearbeitung der gestellten Aufgaben
schulen gegenseitigen respektvollen Umgang durch Vortragen/Zuhören und
Fragestellen an die eigenen Kommilitonen

Inhalt:

1. Einführung: Motivation, Zusammenfassung strömungsmechanischer
 Grundlagen, Erhaltungsgleichungen.
2. Rheologie, Materialgesetze in der Strömungsmechanik: Newtonsche und
 Nicht-Newton'sche Fluide, Viskoelastizität
3. Viskose Schichtenströmungen: Laminare und turbulente
 Innenströmungen, instationäre Strömungen, Außenströmungen,
 Klassifizierung, analytische Lösungen, Selbstähnlichkeit
4. Massen und Stofftransport in laminaren und turbulenten Grenzschichten
5. Mehrphasige Strömungen und Strömungen in porösen Medien
6. Strömungsvorgänge in chemischen Apparaten: Kennzahlen,
 Phänomene, Auslegung

Studien-Prüfungsleistungen
mündliche Prüfung (30 min)

Medienformen:
Skript, Tafel, Folien

Literatur:
1. Eigenes Skript
2. Spurk, Strömungslehre – Einführung in die Theorie der Strömungen,
 Springer Verlag.
4. Strauß, Strömungsmechanik-Einführung für Verfahrensingenieure, VCH.
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul:</th>
<th>Strömungsmesstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Dr. Anthony Gardner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS, Übung 1 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 42 h Präsenzstudium; 48 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Strömungsmechanik 1</td>
</tr>
</tbody>
</table>

Lernziele:

- Die Studierenden...
 - kennen und verstehen die besprochenen Methoden zur Messung von Strömungen
 - sind in der Lage, für vorliegende Strömungen geeignete Messinstrumente zu wählen und ihren Einsatz zu skizzieren
 - verstehen und beschreiben die Funktionsweise der Messinstrumente und der zugrunde liegenden Messprinzipien
 - erläutern die Einflussfaktoren, denen Messergebnisse der besprochenen Verfahren und Instrumente unterliegen können

Inhalt:

1. Einführung in die Strömungsmesstechnik: Grundlagen und Begriffe
2. Drucksonden und Druckmessgeräte, Druckmessungen mittels "Pressure Sensitive Paint" (PSP)
3. Durchflussmessung
4. Temperatursonden und Temperaturmessgeräte, Temperaturmessungen mittels "Temperature Sensitive Paint" (TSP) und Infrarot-Kameras
5. Anemometer und Hitzdrähte
6. Kraftmessung
7. Optische Geschwindigkeitsmessungen: Laser-2-Fokus-Anemometrie (L2F), Laser-Doppler-Anemometrie (LDA), Doppler Global Velocimetry (DGV) Particle Image Velocimetry (PIV)
8. Optische Dichteverfahren: Schatten-, Schlieren- und Interferometrieverfahren
9. Sichtbarmachung: Farbstoffe, Rauch, Nebel, Faden
10. Versuchsanlagen und Modellgesetze
11. Demonstrationsversuche: Schatten- und Schlierenverfahren, PIV, BOS, SPR, andere kleine Demonstrationsversuche
12. Besichtigung des Zentrums für Luft- und Raumfahrt (DLR) in Göttingen

Studien- / Prüfungsleistungen:

Prüfungsform: bis 35 Teilnehmer*innen mündliche Prüfung, sonst Klausur

Medienformen:

Tafel, Folien, Besichtigung von Windkanalanlagen

Literatur:

- Eigenes Skript
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Technische Standardisierung / Normung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>2. oder 3.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Bernd Hartlieb</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 28 h Präsenzstudium, 62 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Lernziele

Kennen von technische, wirtschaftliche und rechtliche Bedeutung von Normung und Standardisierung. Die Strukturen der Normung (Wer ist an der Normungsarbeit wie beteiligt, inkl. innerbetriebliche Normung) sowie der Aufbau und Inhalt von Normen sind ihm bekannt.

Umsetzung einfachen Normungsvorhaben in Normungsgremien und beurteilen der notwendigen Prozesse.

Erkennen von überbetrieblichen Zusammenhängen im interdisziplinären Normungsprozess zwischen Betriebswirtschaft und Produktentwicklung.

Inhalt:

Standardisierung und Normung ist eine interdisziplinäre Aufgabe, die einerseits zur rationellen Betriebsführung und andererseits zum optimalen Marktzugang der im Unternehmen produzierten Produkte oder Dienstleistungen führt. Ferner ist die Normung ein wichtiges Mittel für die rechtliche Unbedenklichkeit von Produkten und Dienstleistungen im Markt (Produkthaftung, CE).

In der Vorlesung werden unter anderem mittels Vortrag, eigenen Problemanalysen, Moderationstechniken das „unbekannte Wesen“ Standardisierung erarbeitet.

Studien-Prüfungsleistungen:

Mündliche Prüfung, Ausarbeitung

Medienformen:

Literatur:

<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Turbulente Strömungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Gunther Brenner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>2 SWS V; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h; 28 h Präsenzstudium, 62 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Vorausgesetzt werden die Kenntnisse der Vorlesungen Mechanik, Ingenieurmathematik und Strömungsmechanik 1</td>
</tr>
</tbody>
</table>

Lernziele

- Kennen und erläutern die Eigenschaften und Erscheinungsformen turbulenter Strömungen
- können aus den Schließungsannahmen die Ansätze zur Modellierung von Turbulenz herleiten und bewerten
- können Modelle zur Berücksichtigung spezieller Strömungsregime (Wandgrenzschichten, Scherströmungen) beschreiben und erklären
- können die Ansätze zur Turbulenzmodellierung und –berechnung erläutern
- können eine Stabilitätsbetrachtung durchführen
- können auf Basis der Grundgleichungen die statistische Beschreibung für Turbulenz herleiten.

Inhalt:

1. **Einführung in turbulente Strömungen:** Phänomene, Eigenschaften, Technologische Aspekte und Beispiele
2. **Grundgleichungen der Strömungsmechanik:** Euler- und Navier-Stokes Gleichungen
3. **Stabilität und Instabilität turbulenter Strömungen:** Stabilitätsbetrachtung viskoser Scherströmungen, Orr Sommerfeld Analyse, Nichtlinearität und Chaos, laminar-turbulenter Übergang (Transition)
4. **Statistische Beschreibung turbulent Felder:** (Korrelationen, Wahrscheinlichkeitsdichtefunktionen, Momente)
5. **Erscheinungsformen turbulenter Scherströmungen:** (Skalenbetrachtung, Energiespektren, Wärmetransport in Scherschichten, halbempirische Schließungsansätze für Grenzschichten)
6. **Modellierung industrieller Strömungsprobleme**
7. **Möglichkeiten der direkten Simulation der Turbulenzmodellierung**
8. **Moderne Ansätze zur Berechnung turbulenter Strömungen:** (Lattice-Boltzmann, Smoothed Particle Hydrodynamics, LES, DES, SAS usw.)

Studien-Prüfungsleistungen

bis 10 Teilnehmer Seminarleistung (Vortrag zu ausgewählten Problemen turbulenter Strömungen), bis 35 Teilnehmer*innen mündliche Prüfung, sonst Klausur

Medienformen: Skript, Tafel, Folien

Literatur:

1. Tennekes, Lumley, A first course in Turbulence.
2. Rotta, Turbulente Strömungen.
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Verarbeitungstechnik neuzeitlicher Werkstoffe für Maschinenbau und Verfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. R. Reiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

| Lernziele | Die Studierenden können den Aufbau und die charakteristischen Eigenschaften neuzeitlicher Werkstoffe beschreiben. Sie sind in der Lage, die metallkundlichen Grundlagen auf die Einstellung der Werkstoffeigenschaften zu übertragen. Sie können ableiten, welche Werkstoffeigenschaften für welche betrieblichen Anforderungen erforderlich sind. Sie können die aus den Werkstoffeigenschaften und den Einsatzbedingungen die Anforderungen an die Verarbeitungsprozesse ableiten |
| Inhalt: | Die Vorlesung "Verarbeitung neuzeitlicher Werkstoffe" geht schwerpunktmaßig auf die fugetechnische Verarbeitung moderner Konstruktions- und Funktionswerkstoffe sowie auf das Eigenschaftsprofil der Verbunde ein. Behandelt werden:
- höhere- und hochfeste Feinkornbaustähle
- Feinblechwerkstoffe
- hochlegierte Stähle
- Nickeltbasislegierungen
- Aluminium- und Magnesiumlegierungen
- Metall-Matrix-Verbundwerkstoffe
- Ingenieurkeramiken

<p>| Studien-Prüfungsleistungen: | Mündliche Prüfung (45 min, Einzelprüfung) oder Klausur (90 min, bei > 50 Teilnehmer) |
| Medienformen: | Powerpoint Präsentation |
| Literatur: | " |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Verbrennungskraftmaschinen I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. H. Schwarze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>
| **Lernziele** | Nach dem Bestehen der Prüfung sollen HörerInnen dieser Vorlesung in der Lage sein, die in der Vorlesung besprochenen Sachverhalte und Herangehensweisen selbständig auf technische und motorische Fragestellungen übertragen zu können. Dazu gehören im Einzelnen:
1. Grundbegriffe, Methoden und Kenntnisse über thermische Hubkolbenmotoren und deren Funktion beschreiben können.
2. grundlegende Geschwindigkeits- und Beschleunigungsgleichungen im Triebwerk entwickeln können.
4. Energieumsatz und der Teilwirkungsgrade der thermischen Hubkolbenmaschine erarbeiten können.
5. grundlegende thermodynamische Zusammenhänge in der Maschine berechnen können.
6. Grundlagen der technischen Verbrennung erklären können. |
| **Inhalt:** | 1. Einführung: Grundsätzlicher Aufbau von Kolbenmaschinen; Bauart, Brennverfahren, Ladungswechsel, Zylinderanordnung; Wirtschaftliche Bedeutung
2. Aufbau von Hubkolbenmaschinen: Kolbenweg, Kolbengeschwindigkeit, Kolbenbeschleunigung; Massenkräfte am Triebwerk; Gaskräfte am Kolben; Massenausgleich
3. Konstruktionselemente des Hubkolbenmotors: Die Kurbelwelle; die Pleuelstange; Gleitlager; Kolben, Kolbenringe und Kolbenbolzen; das Zylinderrohr; der Zylinderkopf; der Ventiltrieb; das Zylinderkurbelgehäuse; das Kühlssystem
4. Kenngrößen und thermodynamische Grundlagen: Mitteldruck und Leistung; Thermodynamische Grundlagen: Kreisprozesse; Energiebilanz des Motors
5. Grundlagen der motorischen Verbrennung: Der Ladungswechsel; der Verdichtungsvorgang; die Verbrennung im Otto-Motor, die Verbrennung im Diesel-Motor |
<p>| Studien-Prüfungsleistungen: | mündliche Prüfung (30 min.) |
| Medienformen: | Power Point | |
| Literatur: | Skript |
| | Eduard Köhler | Verbrennungsmotoren, 2. Auflage 2001 |
| | (ISBN 3-528-13108-X) | |
| | K.-H. Küttner | Kolbenmaschinen, 6. Auflage 1993 |
| | (ISBN 3-519-06344-1) | |
| | Mollenhauer/Grohe | Handbuch Dieselmotoren, 3. Auflage 2007 |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung / Teilmodul</th>
<th>Verbrennungskraftmaschinen II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. H. Schwarze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 3 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 42 h Präsenzstudium, 78 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Lernziele</td>
<td>Nach dem Bestehen der Prüfung sollen HörerInnen dieser Vorlesung in der Lage sein, die in der Vorlesung besprochenen Sachverhalte und Herangehensweisen selbständig auf technische und motorische Fragestellungen übertragen zu können. Dazu gehören im Einzelnen: 1. die Funktionsweise von Verbrennungsmotoren erklären können. 2. unterschiedliche Kraftstoffe und die Entstehung der giftigen Schadstoffe interpretieren können. 3. moderne Techniken zur Leistungssteigerung von thermischen Maschinen einstufen können. 4. zukünftige Techniken und alternative Motorenkonzepte gegenüberstellen können.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Der Kraftstoff: Ottokraftstoffe; Dieselkraftstoffe; Alternativen zum Kraftstoff aus Mineralöl 2. Das Einspritzsystem: Benzineinspritzsysteme; Direkteinspritzender Ottomotor; Kraftstoff-Einspritzsystem des Dieselmotors; Aufbau von Einspritzsystemen 3. Entstehung der Schadstoffe: Ottomotor; Dieselmotor; Einfluss des Betriebszustandes 4. Abgasbehandlung: Abgasreinigung beim Ottomotor; Abgasreinigung beim Dieselmotor 5. Die Aufladung: Aufladeverfahren; Leistungsgrenzen, Ladeluftkühlung 6. Zukünftige Techniken zur Erhöhung des motorischen Wirkungsgrades beim Ottomotor 7. Alternative Motorenkonzepte: Motoren auf Basis von Sekundärenergie; Motoren auf Basis der Primärenergieträger; Solarantrieb; Brennstoffzelle; Elektromotor; Hybride</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>mündliche Prüfung (30 min.)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Power Point</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>Mollenhauer/</td>
<td>Handbuch Dieselmotoren, 3. Auflage 2007</td>
</tr>
<tr>
<td>Grohe</td>
<td>Handbuch Verrennungsmotoren, 2. Auflage 2002</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Simulation und Test in der Produktentwicklung</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Simulation und Test in der Produktentwicklung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Lohrengel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflicht Studienrichtung Allgemeiner Maschinenbau Studienrichtung Mechatronik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Teilnehmer unbegrenzt, Projekt 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Technisches Zeichnen, Technische Mechanik I/II/III</td>
</tr>
</tbody>
</table>

Lernziele
Nachdem die Studierenden das Modul erfolgreich abgeschlossen haben, sollten Sie in der Lage sein:

- Messverfahren zur Bestimmung der mechanischen Bauteilbeanspruchungen auszuwählen, anzuwenden und zu beurteilen
- Sensoren entsprechend der zu erwartenden Beanspruchungsart auszuwählen, deren Ausrichtung und Anbringungsort festzulegen, die geeignete elektrische Beschaltung vorzunehmen und die gemessenen Signale kritisch zu diskutieren
- maschinenakustische Gesetze wiederzugeben und an zu wenden.
- akustische Meßtechnik auszuwählen und zu benutzen,
- akustische Messungen an Bauteilen zu planen, durchzuführen, Ergebnisse zu interpretieren und Lösungen vorzuschlagen
- Konstruktive Verbesserungsmassnahmen zu erarbeiten

Kompetenzen
Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen

Inhalt:
1. Einführung in die experimentelle Belastungs- und Beanspruchungsermittlung
2. Messprinzip, Aufbau und Empfindlichkeit des DMS
3. DMS-Installation
4. Signalverarbeitung
5. Störende Einflüsse beim Messen mit DMS
6. Dehnungen und Spannungen bei einachsiger Beanspruchung
7. Der zweiachsige Spannungszustand bei elastischer Verformung
8. Zustandsanalyse mit DMS-Rosetten
9. Anwendungsbeispiele aus der Praxis, Vergleichssimulationen mit FEM
10. Möglichkeiten zur experimentellen Ermittlung von Eigenspannungen mit DMS
11. Festigkeitshypothesen
12. Grundbegriffe der Schwingungsmessung und der technischen Akustik
13. Entstehung von Maschinenschwingungen/-geräuschen,
14. Regelung, Geräuschmessung, Verfahrensübersicht, Vergleichssimulationen mit FEM
15. Konstruktionsrichtlinien, Bewertung von Maßnahmen, Regeln und Maßnahmen zur Schwingungs- und Geräuschminderung im Maschinenbau
insbesondere in Antriebssträngen.

<table>
<thead>
<tr>
<th>Studien-Prüfungsleistungen:</th>
<th>In der Regel Klausur, Dauer 90 Minuten. In Ausnahmefällen bei weniger als 15 Studierenden mündliche Prüfung möglich. Dauer 30 Minuten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Powerpoint, Tutorien</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
<td>Simulationsmethoden in den Ingenieurwissenschaften</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Simulationsmethoden in den Ingenieurwissenschaften</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Gunther Brenner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>2 SWS V, 1 SWS Ü</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 42 Präsenzstudium, 78 Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Technische Mechanik I-II, Strömungsmechanik I, Technische Thermodynamik, Wärmeübertragung</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Die Studierenden..</td>
</tr>
<tr>
<td></td>
<td>- kennen und verstehen die Prinzipien physikalischer Modellbildung für diskrete und kontinuumsmechanische Systeme</td>
</tr>
<tr>
<td></td>
<td>- kennen die mathematischen Grundlagen der Approximations- und Lösungsverfahren</td>
</tr>
<tr>
<td></td>
<td>- können eine Fehlerbetrachtung durchführen</td>
</tr>
<tr>
<td></td>
<td>- können unbekannte Problemstellungen analysieren und die behandelten Simulationsmethoden auf diese anwenden</td>
</tr>
<tr>
<td></td>
<td>- können numerische Ergebnisse kritisch prüfen und anhand analytischer Lösungen verifizieren</td>
</tr>
<tr>
<td></td>
<td>- können eine Problemstellung in begrenzter Zeit gemeinsam im Team und eigenständig bearbeiten,</td>
</tr>
<tr>
<td></td>
<td>- können die numerischen Ergebnisse dieser Arbeit (im Team) visualisieren, präsentieren und kritisch mit Fachexpert*innen/der Allgemeinheit diskutieren</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Vertiefte Kenntnisse im mathematisch-, natur- und ingenieurwissenschaftlichen Bereich zur Lösung komplexer Aufgabenstellungen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Physikalische Modellbildung</td>
</tr>
<tr>
<td></td>
<td>a. Diskrete Systeme</td>
</tr>
<tr>
<td></td>
<td>b. Kontinuumsmechanische Systeme</td>
</tr>
<tr>
<td></td>
<td>2. Mathematische Grundlagen</td>
</tr>
<tr>
<td></td>
<td>a. Approximations- und Lösungsverfahren</td>
</tr>
<tr>
<td></td>
<td>b. Fehlerbetrachtung</td>
</tr>
<tr>
<td></td>
<td>3. Fallstudien</td>
</tr>
<tr>
<td></td>
<td>a. Mechanische Festigkeitsanalyse (FEM)</td>
</tr>
<tr>
<td></td>
<td>b. Thermische Analyse (FEM)</td>
</tr>
<tr>
<td></td>
<td>c. Modalanalyse (FEM)</td>
</tr>
<tr>
<td></td>
<td>d. Strömungsanalyse (CFD)</td>
</tr>
<tr>
<td></td>
<td>e. Mehrkörpersimulation (MKS)</td>
</tr>
</tbody>
</table>
4. Praktische Übungen als Projekt

<table>
<thead>
<tr>
<th>Prüfung:</th>
<th>Mündliche Prüfung bei bis zu 35 Teilnehmerinnen, bei mehr als 35 Teilnehmerinnen Theoretische Arbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Softwaretechnik</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Softwaretechnik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Rausch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Studienrichtung:</td>
<td>Mechatronik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 4 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 56 h Präsenzstudium, 94 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Programmierkenntnisse (ideal wäre: Informatik I und/oder Programmierkurs)</td>
</tr>
</tbody>
</table>

Lernziele

Die Studierenden können die Definitionen und die Terminologie, Methoden und Werkzeuge sowie die unterschiedlichen theoretischen sowie praktischen Herangehensweisen nennen und darstellen.

- Sie beherrschen die Teilaspekte, und können diese einordnen, bewerten und anwenden.
- Sie haben einen Überblick der verschiedenen Ansätze und können diese einordnen.
- Sie kennen notwendige Voraussetzungen und dazu verwendete Technologien.
- Sie beherrschen die wichtigsten Methoden & Verfahren und können diese anwenden.
- Sie kennen exemplarische Szenarien und können diese darstellen, erklären und bewerten.
- Sie sind in der Lage Probleme systematisch zu analysieren und Lösungsvorschläge zu entwickeln.

Neben den methodischen Lernzielen werden den Studierenden Teamfähigkeit, Kommunikation und Präsentation vermittelt.

Kompetenzen

Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:

Zur Absicherung der Qualität der dabei erarbeiteten (Teil-) Ergebnisse werden sowohl konstruktive Hilfestellungen als auch analytische Verfahren wie Reviews und Tests aufgezeigt.

Neben dem Aufzeigen von agilen Methoden, wie z.B. SCRUM, wird anhand eines konkreten Vorgehensmodells aus der Praxis, dem V-Modell XT,
<table>
<thead>
<tr>
<th>anschließend der Projektverlauf gezeichnet. Die Übungen bestehen aus Gruppenaufgaben (bis zu 3 Studenten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-Prüfungsleistungen: Es werden studienbegleitende Prüfungsvorleistungen (Hausaufgaben, Präsenzübungen) verlangt. Die Prüfung erfolgt schriftlich (120 Minuten).</td>
</tr>
<tr>
<td>Medienformen: Folien</td>
</tr>
<tr>
<td>Studiengang:</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
</tr>
<tr>
<td>Lernziele</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Studiengang</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen</td>
</tr>
<tr>
<td>Lernziele:</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
</tbody>
</table>
| Inhalt: | - Grundlagen der Systemidentifikation
- Methoden zur Parameteridentifikation bei linearen bzw. nichtlinearen Systemen |
<p>| Studien-/ Prüfungsleistungen: | Festlegung von Prüfungsform (Klausur oder mündliche Prüfung) und Dauer gemäß der geltenden Prüfungsordnung, in der Regel mündliche Prüfung mit einer Dauer von 30 min |
| Medienformen: | Tafel, Beamer-Präsentation |</p>
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Schwingungslehre</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
<td>Technische Schwingungslehre</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Stefanie Retka</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/Übung 2V/1U SWS, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Technische Mechanik I-III, Mathematik I-III</td>
</tr>
<tr>
<td>Lernziele</td>
<td>Wissen aus der Technischen Mechanik und Mathematik abrufen und abstrahieren verschiedene Methoden zur Berechnung von ungedämpften und gedämpften freien und erzwungenen Ein- und Mehrfreiheitsgradsystemen entwickeln und anwenden gegebene Systeme klassifizieren und lösen Ergebnisse in Hinblick auf die Bedeutung für das schwingfähige System interpretieren Reduktionsverfahren erproben und auswerten</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Vertiefte Kenntnisse im mathematisch-, natur- und ingenieurwissenschaftlichen Bereich zur Lösung komplexer Aufgabenstellungen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Gedämpfte und ungedämpfte fremderregte Einfreiheitsgradsysteme Harmonische und periodische Anregung Reibungseinflüsse bei schwingenden Systemen Energiebetrachtungen Gedämpfte und ungedämpfte fremderregte Mehrfreiheitsgradsysteme Modaltransformation</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Teilnehmer > 15: Klausur (120 Minuten) Teilnehmer < 15: mündliche Prüfung (30 Minuten, Einzelprüfung)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Master Maschinenbau</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technisches Englisch</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul:</td>
<td>Technisches Englisch</td>
</tr>
<tr>
<td>Semester:</td>
<td>2.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Schulze-Bentrop</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung/ Übung 4 SWS, Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h; 56 h Präsenzstudium, 64 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Niveau: B 2</td>
</tr>
<tr>
<td></td>
<td>Mitglied der Hochschule</td>
</tr>
<tr>
<td></td>
<td>Alle Studierenden, die einen Englischkurs belegen möchten, müssen an einem Einstufungstest teilnehmen.</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>1. Die Studierenden lernen den Wortschatz des Fachgebiets kennen.</td>
</tr>
<tr>
<td></td>
<td>2. Sie lesen bzw. hören komplexe fachbezogene Texte.</td>
</tr>
<tr>
<td></td>
<td>3. Sie analysieren diese Fachtexte grammatikalisch sowie inhaltlich.</td>
</tr>
<tr>
<td></td>
<td>4. Sie äußern sich mündlich zu Themen des Fachgebiets und beteiligen sich aktiv an Fachgesprächen.</td>
</tr>
<tr>
<td></td>
<td>5. Sie verfassen kurze fachbezogene Texte.</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Fähigkeit, in nationalen und internationalen Teams zu arbeiten und sicher zu kommunizieren</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Lesen von Texten aus technischen Themenbereichen</td>
</tr>
<tr>
<td></td>
<td>2. Übungen zu Text- und Wortverständnis</td>
</tr>
<tr>
<td></td>
<td>3. Übungen zum Fachvokabular</td>
</tr>
<tr>
<td></td>
<td>4. Freies Sprechen</td>
</tr>
<tr>
<td></td>
<td>5. Grammatikalische Übungen</td>
</tr>
<tr>
<td></td>
<td>6. Schreibübungen</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Lesematerial, Audio-CDs, Film</td>
</tr>
</tbody>
</table>
Studiengang: Master Maschinenbau

Modulbezeichnung: Tribologie

Lehrveranstaltung / Teilmodul: Tribologie

Semester: 2.

Dozent(in): Prof. Dr.-Ing. H. Schwarze

Sprache: Deutsch

Zuordnung zum Curriculum:
- Studienrichtung Materialtechnik: Wahlpflicht
- Studienrichtung Allgemeiner Maschinenbau: Pflicht

Lehrform / SWS:
- Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt

Arbeitsaufwand:
- 150 h; 42 h Präsenzstudium, 108 h Selbststudium

Kreditpunkte: 5

Voraussetzungen:
- keine

Lernziele:
Nach dem Bestehen der Prüfung sollen HörerInnen dieser Vorlesung in der Lage sein, Begriffe und Methoden zur Beschreibung von Gleit- und Wälzkontakten vergleichen und erklären zu können. Darüber hinaus sollen sie die in der Vorlesung übermittelten Sachverhalte und Herangehensweisen selbständig auf tribologische Fragestellungen verallgemeinern können. Im Einzelnen gehören hierzu:

1. Reibung, Verschleiß und Schmierung erklären können.
2. wichtigste Reibungs- und Verschleißkennzahlen sowie Abtrag-Weg-Relationen begreifen und vergleichen können.
3. wichtigste thermophysikalische Eigenschaften von Schmiermitteln erklären können.
4. wichtigste tribologische Grundbegriffe auf hydrostatische, hydrodynamische und elastohydrodynamische Anwendungen in der Tri-Kompetenzen

Kompetenzen:
- Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen sowie Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:
1. Reibung und Verschleiß
2. Viskosität
3. Das hydrostatische Lager
4. Das stationär belastete hydrodynamische Gleitlager
5. Das hydrodynamische Axiallager
6. Instationär belastete Gleitlager
7. Die Grundlagen der Elastohydrodynamik

Studien-Prüfungsleistungen:
- Klausur (120 min.) bestehend aus Kurzfragen- und Berechnungsteil

Medienformen:
- Powerpoint

Literatur:
- Skript
 - Klamann Schmierstoffe und verwandte Produkte (ISBN 3-527-25966-X)
<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Werkstoffkunde der Metalle II</td>
</tr>
<tr>
<td>Lehrveranstaltung /</td>
<td>Werkstoffkunde der Metalle II</td>
</tr>
<tr>
<td>Teilmodul</td>
<td></td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. L. Wagner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h; 42 h Präsenzstudium, 108 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Keine</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Nach erfolgreichem Abschluss kennen die Studierenden die Grundlagen des Festigkeitsverhaltens metallischer Werkstoffe unter monotoner und zyklischer Beanspruchung.</td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td>Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Härtungsmechanismen und Schmidtsches Schubspannungsgesetz, Definition der Gleitverteilung, Ursachen inhomogener Gleitverteilung Einfluss der metallkundlichen Parameter Korngröße, Phasenabmessungen, Phasenmorphologie und -anordnung, plastische Vorverformung, Ausscheidungszustand auf die Gleitverteilung und das Versagensverhalten (Rissbildung, Rissausbreitung) metallischer Werkstoffe bei verschiedenen Beanspruchungsarten</td>
</tr>
<tr>
<td>Studien-Prüfungsleistungen:</td>
<td>mindestens 30 minütige mündliche Prüfung oder 90 minütige Klausur</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>PowerPoint, Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Vorlesungsskript Hornbogen: Werkstoffe, 10. Auflage Springer 2011</td>
</tr>
</tbody>
</table>
Studiengang:
Master Maschinenbau

Modulbezeichnung:
Werkstoffkunde der Nichteisenmetalle

Lehrveranstaltung / Teilmodul
Werkstoffkunde der Nichteisenmetalle

Semester:
1. oder 3.

Dozent(in):
Dr. M. Wollmann

Sprache:
Deutsch

Zuordnung zum Curriculum
Wahlpflicht

Lehrform / SWS:
Vorlesung 2 SWS; Übung 1 SWS; Teilnehmer unbegrenzt

Arbeitsaufwand:
150 h; 42 h Präsenzstudium, 108 h Selbststudium

Kreditpunkte:
5

Voraussetzungen:
Kenntnisse in Werkstoffkunde und Werkstofftechnik sowie in naturwissenschaftlichen Grundlagenfächern

Arbeitsaufwand:

Kompetenzen:
Spezifische Kenntnisse und Methodenkompetenz zur Vertiefung oder Erweiterung ingenieurwissenschaftlicher Themen

Inhalt:
Folgende Werkstoffe und deren Legierungen werden behandelt:
- Aluminium, Titan, Kupfer, Nickel, Magnesium, Zink, Zinn, Blei, Platin, Silber

<table>
<thead>
<tr>
<th>auch auf einen systematischen Überblick im Hinblick auf die unterschiedlichen Legierungsklassen gelegt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-Prüfungsleistungen: mindestens 30 minütige mündliche Prüfung oder 90 minütige Klausur; bei geringen Teilnehmerzahlen (gleich kleiner acht) kann die Prüfung mündlich durchgeführt werden</td>
</tr>
<tr>
<td>Medienformen: PowerPoint, Tafel</td>
</tr>
<tr>
<td>Literatur: Präsentationsunterlagen; ausgewählte Vorlesungstexte dieser Veranstaltung; Taschenbuch der Werkstoffe, Leipzig; Titan und Titanlegierungen, Weinheim; Kupfer, DKI Düsseldorf; Aluminium von innen, Aluminium-Verlag, Düsseldorf; Werkstoffkunde, Bargel/Schulze, Schroedel-Verlag Hannover; Magnesium Technology, Friedrich/Mordike, Springer-Verlag, Berlin, Heidelberg</td>
</tr>
<tr>
<td>Studiengang:</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>Lehrveranstaltung / Teilmodul</td>
</tr>
<tr>
<td>Semester:</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Studienrichtung Materialtechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
</tr>
</tbody>
</table>

Lernziele

Kompetenzen

Kenntnisse, Fähigkeiten und Methodenkompetenz zur ingenieurwissenschaftlichen Analyse und Synthese von Produkten und Systemen

Inhalt:

Werkstoffe und Fertigung, Halbzeug und Bauteile, Urformen, Umformen, Trennen, Spanen und Schleifen, Fügen, Zustandsdiagramme am Beispiel technisch relevanter Werkstoffe, auftretende Phasen, eutektische, eutektoid und eutektoid Reaktionen, Technische Wärmebehandlung, Einteilung und Bezeichnungssysteme der Stähle

| Basis Al, Ti, Mg, Cu, Ni; Werkstoffaufbau: typische Legierungen, charakteristische Mikrostrukturen und Eigenschaften, Anwendungen, Werkstoffbeanspruchung |
| Mechanische Oberflächenbehandlung: Kugelstrahlen und Festwalzen, Eigenschaftsänderungen im Oberflächenbereich, Auswirkungen auf Bauteileigenschaften, Schadensanalyse, Bruchflächenanalyse bei monotoner, zyklischer und statischer Beanspruchung, Einfluss von Werkstofffehlern, Bearbeitungsfehlern und Überbeanspruchung im Einsatz |
| Studien-Prüfungsleistungen: mindestens 30 minütige mündliche Prüfung oder 90 minütige Klausur; bei geringen Teilnehmerzahlen (gleich kleiner acht) kann die Prüfung mündlich durchgeführt werden |
| Medienformen: PowerPoint, Tafel |