Modulhandbuch

Master of Science
"Mining Engineering"

Fakultät für Energie- und Wirtschaftswissenschaften
der Technischen Universität Clausthal

26. Mai 2015
Index:

Index..1-2

List of abbreviations..3

Pflichtmodule

Module 1 Shaft Sinking..4
Module 2 International Mining..5-6
Module 3 Geoinformation Systems (GIS) ..7
Module 4 Mineral Resources..8
Module 5 Advanced Drilling Engineering I...9
Module 6 Ventilation and Climatization – Advanced Level..................................10-11
Module 7 Underground Mining Equipment...12
Module 8 Advanced Rock Mechanics..13-14
Module 9 Advanced Mine Surveying..15-16
Module 10 Mineral Processing..17
Module 11 Underground Mine Planning..18-19
Module 12 Advanced Surface Mining..20
Module 13 Applied Rock Mechanics...21-22
Module 14 Seminar...23
Module 15 Industry Internship..24
Module 16 Student Research Project...25
Module 17 Master Thesis...26

Electives

Module 18.1 Specialized Driving Methods...27-28
Module 18.2 Project Development in Underground Primary Production................29
Module 18.3 Underground Blasting..30-32
Module 18.4 Software for Underground Mine Planning.................................33
Module 18.5 Advanced Drilling Engineering II..34
Module 18.6 Natural Gas Storage in Rock Caverns35
Module 18.7 Advanced Underground Mining...36
Module 18.8 Underground Emergency Response I.....................................37-38
Module 18.9 Underground Emergency Response II39-40
Module 18.10 Sustainability in Underground Mining....................................41
List of abbreviations:

General:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hpw</td>
<td>Hours per week (Work load)</td>
</tr>
<tr>
<td>CP</td>
<td>Credit Point (1 CP entspricht 1 ECTS-Punkt)</td>
</tr>
</tbody>
</table>

Course type / Modul:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PF)</td>
<td>Compulsory subject</td>
</tr>
<tr>
<td>(WPF)</td>
<td>Compulsory optional subject</td>
</tr>
<tr>
<td>(WF)</td>
<td>Elective (additional Exam)</td>
</tr>
</tbody>
</table>

Type of Modul:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Lecture</td>
</tr>
<tr>
<td>Ü</td>
<td>Exercise</td>
</tr>
<tr>
<td>V/Ü</td>
<td>Lecture and exercise</td>
</tr>
<tr>
<td>V/E</td>
<td>Lecture and fieldtrip</td>
</tr>
<tr>
<td>P</td>
<td>Project report</td>
</tr>
<tr>
<td>St.</td>
<td>Student research project</td>
</tr>
<tr>
<td>S</td>
<td>Seminar paper</td>
</tr>
<tr>
<td>AB</td>
<td>Written thesis</td>
</tr>
<tr>
<td>B</td>
<td>Written report</td>
</tr>
</tbody>
</table>

Type of Exam:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>Written Exam</td>
</tr>
<tr>
<td>(M)</td>
<td>Oral Exam</td>
</tr>
<tr>
<td>(H)</td>
<td>Thesis/paper</td>
</tr>
<tr>
<td>(R)</td>
<td>Presentation</td>
</tr>
<tr>
<td>(P)</td>
<td>Internship</td>
</tr>
</tbody>
</table>

Skills:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK</td>
<td>Professional skills</td>
</tr>
<tr>
<td>MK</td>
<td>Technical skills</td>
</tr>
<tr>
<td>SK</td>
<td>System expertise</td>
</tr>
<tr>
<td>SOK</td>
<td>Social skills</td>
</tr>
</tbody>
</table>
Module 1 Shaft Sinking

Degree Programme: M.Sc. Mining Engineering

Number of the Module: 1

Name of the Module: Shaft Sinking

Course(s):
- Shaft Sinking and Deep Foundations
- Tutorial for Shaft Sinking and Deep Foundations

Term: 1

Responsible person for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld

Lecturer: Univ.-Prof. Dr.-Ing. Oliver Langefeld

Language: English

Position within the Curriculum: Compulsory subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>SPW</th>
<th>Work Load [h]</th>
<th>ECTS</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture and Tutorial Shaft Sinking and Deep Foundations (2V+2U)</td>
<td>4</td>
<td>56/124</td>
<td>6</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements:

Learning objectives / Skills:
The student to use appropriate knowledge, principles and techniques to plan and execute the sinking and construction of pre-shafts, shafts, staples and inside shafts, ventilation boreholes and auxiliary shafts in underground mines. To plan and execute the construction of pillars in deep foundations, vertical sub-surface technical barriers and dams, subterranean curtains and bored pile walls, construction pits and construction shafts both in structural engineering and in civil engineering projects in transportation and infrastructure like harbours, bridges, dams, utility supplies, channels and tunnels. The student to identify, analyse and solve engineering problems resulting from the need to conduct shaft sinking and deep foundations in mining as well as in civil engineering projects, and to enable the students to apply this knowledge in order to develop, discuss and justify proper engineering solutions to those tasks and problems.

Course Outline:
* Characterization and Classification of vertical openings
* Technical and organizational Planning of Shaft Sinking Projects
* Dimensioning and construction of Pre-Shafts
* Shaft Sinking with conventional drilling and blasting
* Consolidation methods (Freezing shaft and injection method)
* Shaft Boring Methods
* Shaft Reinforcement, Support and Lining
* Shaft Haulage Technology (Basics)

Assessment:
Assignment (homework, exercise, presentation) (25%) and Oral (30 – 40 min) or Written (90 min) examination (75%)

Media:
Lecture (Activity-based Learning Approach), Beamer-Presentation, Skript, Tutorials, Laboratory, Group and Project works

Literature:
- SME Mining Engineering Handbook
- Surface and Underground Excavations
- Secondary literature-to be announced in the lecture

Additional Information:
The Tutorial is held in a block course within three days. The date is announced at the beginning of the semester
Module 2 International Mining

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>2</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>International Mining</td>
</tr>
<tr>
<td>Course(s):</td>
<td>International Mining</td>
</tr>
<tr>
<td></td>
<td>Seminar for International Mining</td>
</tr>
<tr>
<td></td>
<td>Mining and Finance</td>
</tr>
<tr>
<td></td>
<td>Tutorial for Mining and Finance</td>
</tr>
<tr>
<td>Term:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible person for the module:</td>
<td>Univ.-Prof. Dr.-Ing. habil. Tudeshki</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Univ.-Prof. Dr.-Ing. habil. Tudeshki</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory Subject (PF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Contact hours-/Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Mining</td>
<td>1</td>
<td>14/46</td>
<td>2</td>
<td>5</td>
<td>30</td>
<td>50</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Seminar for International Mining</td>
<td>1</td>
<td>14/16</td>
<td>1</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Mining and Finance</td>
<td>1</td>
<td>14/46</td>
<td>2</td>
<td>5</td>
<td>30</td>
<td>50</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Tutorial for Mining and Finance</td>
<td>1</td>
<td>14/16</td>
<td>1</td>
<td>5</td>
<td>45</td>
<td>50</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Requirements:

Learning objectives / Skills:

International Mining:
The students receive factual knowledge about the global mining industry, the worldwide mining and the associated commodity markets as well as insight into the processes of pricing. In addition to basic mining technologies they will acquire knowledge of special mining technologies. In the seminar, which is combined to the project work of Mining and Finance, the students will work on a special topic of international mining and train the capabilities of free speech.

Mining and Finance:
Students will acquire knowledge of the necessary steps for preparation of feasibility studies, project development and project financing. Mediation of skills to assess international raw material projects economically is an important goal of the lecture. In the tutorial the students work in small groups on practical examples, prepare a report and present the results in a seminar.

Course Outline:

International Mining:
- international commodity markets
 - reserves, consumption/production
 - countries, companies, market conditions
 - stock exchanges for commodities, prices
- mining technologies of selected international mining projects
 - surface and underground mining
 - special technologies, e.g. marine mining
- independent seminar on a special topic of international mining

Mining and Finance:
- project participants
- type and content of project studies
- risk assessment
- type of project financing
- market analysis and prices, project costs

Assessment:
group work with final presentation (seminar)

Media:
lecture, projector-presentation, lecture notes
<table>
<thead>
<tr>
<th>PC-based spreadsheet analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature: announcement in the lecture</td>
</tr>
<tr>
<td>Additional Information: -</td>
</tr>
</tbody>
</table>
Module 3 Geoinformation Systems (GIS)

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 3
Name of the Module: Geoinformation Systems (GIS)
Course(s):
- Geoinformation Systems
- Tutorial for Geoinformation Systems
- GIS-based analysis and surface modelling
Term: 1 and 2
Responsible person for the module: Prof. Busch
Lecturer: Prof. Busch
Language: English
Position within the Curriculum Compulsory subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoinformation Systems</td>
<td>2</td>
<td>28/24</td>
<td>6</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Tutorial for Geoinformation Systems</td>
<td>1</td>
<td>14/24</td>
<td></td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>GIS-based analysis and surface modelling</td>
<td>2</td>
<td>28/62</td>
<td></td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total:</td>
<td>5</td>
<td>70/110</td>
<td>6</td>
<td>30</td>
<td>34</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Requirements:
- Profound understanding about theoretical aspects of modeling of spatial objects, knowledge about principles of Geographic Information Systems and their functionalities; Ability to use the software ArcGIS (ESRI) and to use special functions for spatial analysis and modeling of surfaces.

Course Outline:
- Introduction to GIS, definitions, purpose of GIS, Geographic Information and Spatial Data, GIS-functionality, thematic mapping;
- Computer-lab courses: basic functionalities of ArcGIS software and advanced geo-data processing with ArcGIS, Digital Elevation Models, spatial interpolation methods, proximity analysis, overlay functions, design of thematic maps

Assessment:
- Written examination (180 min)

Media:
- lecture, beamer presentation, lecture notes, computer-lab-course

Literature:
- Graeme F. Bonham-Carter: Geographic Information Systems for Geoscientists: Modelling with GIS.
- Nicholas Chrisman: Exploring geographic information systems.
- Tor Bernhardsen: Geographical Information Systems.
- David J. Unwin, David O’Sullivan: Geographic Information Analysis
- Laurie Kelly, Michael F. Worboys, Matt Duckham. GIS: A computing perspective.
- Robert Laurini, Derek Thompson: Fundamentals of spatial information systems.
- ArcGIS online manual and resource centre (http://resources.arcgis.com/en/help/main/10.1/).

Additional Information:
- -
Module 4 Mineral Resources

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 4
Name of the Module: Mineral Resources
Course(s): Geostatistics
Economic Geology
Term: 1 and 2
Responsible Person for the Module: Prof. Lehmann
Lecturer: Prof. Lehmann
Dr. Müller
Language: English
Position within the Curriculum: Compulsory subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h] Contact hours-/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geostatistics</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Economic Geology</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements:

Learning Objectives / Skills:

Geostatistics
The students will learn to understand the principles and calculation methods of geostatistical models and their applications (e.g. kriging) in modern simulation methods.

Economic Geology
Basic knowledge of geology related to mineral deposits, and understanding ore deposits in the framework of Earth evolution.

Course Outline:

Geostatistics
• Short repetition of basic statistics
• Fundamentals of geostatistics, Variography
• Calculation, evaluation and interpretation of variograms
• Use of geostatistical basic data in interpolation methods
• Kriging (2D and 3D)

Economic Geology
Structure of the Earth, geologic time, global geological cycles, rocks and ore, water, magmatic and hydrothermal ore deposits, weathering

Assessment:
Oral (30 min) or written examination (60 min)

Media:
Lecture, projector-presentation, lecture notes

Literature:
Geostatistics:

Economic Geology:

Additional Information:
Recommended: 1-day field trip (Geology of the Harz Mountains)
Module 5 Advanced Drilling Engineering I

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module</td>
<td>5</td>
</tr>
<tr>
<td>Name of the Module</td>
<td>Advanced Drilling Engineering I</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Advanced Drilling Engineering I</td>
</tr>
<tr>
<td></td>
<td>Tutorial for Advanced Drilling Engineering I</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible person for</td>
<td>PD Dr. Dr.-Ing. habil. Catalin Teodoriu</td>
</tr>
<tr>
<td>the Module:</td>
<td></td>
</tr>
<tr>
<td>Lecturer:</td>
<td>PD Dr. Dr.-Ing. habil. Catalin Teodoriu</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the</td>
<td>Compulsory Subject (PF)</td>
</tr>
<tr>
<td>Curriculum:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Contact hours/- Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Drilling Engineering (2V + 1U)</td>
<td>3</td>
<td>42/48</td>
<td></td>
<td>3</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements:
- Specialized knowledge of drilling technology, including machines and special application
- Advanced Applications in the Drilling Practice
- Provides students with an introduction to advanced drilling topics such as underbalanced drilling, modern drilling technologies, geothermal well drilling and fishing operations. Additionally this course offers the opportunity to learn about team work.

Course Outline:
- Drilling Concepts (Drilling the Limit, etc.)
- Well Design Procedure (Well Construction)
- Drilling Optimization
- Drilling Performance Analysis
- Drillstring Dynamics
- Drilling Problems (Risk Analysis, Solutions)
- HP/HT Wells, Horizontal and Extended Reach Wells, Multilaterals
- Under Balanced Drilling
- New Developments in Drilling Operations
- Offshore Drilling (Well Design and Special Consideration)
- Blow Out (Fire Fighting)
- Geothermal Drilling Technology
- Drilling through Gas Hydrates
- Case Studies

Assessment:
- Written Examination (90 min)

Media:
- Interactive multimedia presentation, Video, Skript, Präsenzübung, Hands-On Teaching

Literature:
- SPE.ORG the eLibrary of SPE

Additional Information:
The Tutorial will be „Hands-on teching“. The concept connects the theoretical topics of the lecture with practical aspects and experiments. The main goal of this approach is to handover small projects to the students, in order for them to get a better understanding of the theoretic topics of the lecture. The small projects can be the development of functioning models.
Module 6 Advanced Mine Ventilation and Climatization

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 6
Name of the Module: Advanced Mine Ventilation and Climatization
Course(s): Advanced Mine Ventilation and Climatization
Tutorial Advanced Mine Ventilation and Climatization
Term: 2
Responsible person for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Language: English
Position within the Curriculum: Compulsory Subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>SPW</th>
<th>Work Load [h]</th>
<th>ECTS</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Ventilation and Climatization (2V + 2Ü)</td>
<td>4</td>
<td>56/124</td>
<td>6</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements:

Learning objectives / Skills:
This course develops the knowledge and skills in advanced aspects of underground mine ventilation and climatization practice and environmental control. In addition to the course Mine Ventilation and Climatization on an advanced level, emphasis is also placed on operational aspects such as controlling complex mine ventilation networks and planning ventilation and climatization requirements to manage both safety and production related risks. At the end of the course, the student will be able to:

- Demonstrate practical skill necessary to undertake an underground ventilation and climatization survey together with necessary documentation, analysis and interpretation of results;
- Demonstrate the application of advanced network analysis to ventilation and climatization systems, including thermodynamic aspects;
- Identify the requirements and issues associated with the application of appropriate ventilation and climatization monitoring and measurement systems;
- Develop ventilation designs with regards to environmental hazards found in mines and to apply the ventilation control measures that detect, monitor, minimise and/or manage these hazards;
- Identify, analyse and solve engineering problems regarding gas and dust occurrences;
- Identify, analyse and solve engineering problems resulting from the need to conduct underground mine ventilation and climatization and to enable the students to apply this knowledge in order to develop, discuss and justify proper engineering solutions to those tasks and problems.

Course Outline:

- Review of mine ventilation Basics
- Ventilation Network Analysis and surveys
- Planning and optimisation of mine ventilation systems
- Dust and Gas emissions control in mines
- Design and Planning of Mine refrigeration systems
- Mine Ventilation Project

Assessment:
Assignment (20%) and oral (30 min) or written examination (90 min) (80%)

Media:
Lecture (Activity-based Learning Approach), Beamer-Presentation, Skript, Tutorials, Group and Project works. The Tutorial/ Exercise will be conducted in the ventilation laboratory as well as in the teaching mine “Rammelsberg”.

10
<table>
<thead>
<tr>
<th>Literature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Additional secondary literature-to be announced in the lecture.</td>
</tr>
</tbody>
</table>

| Additional Information: | - |
Module 7 Underground Mining Equipment

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 7
Name of the Module: Underground Mining Equipment
Course(s): Mining Machinery & Equipment, Excavation Machines

Term: 2 and 3
Responsible person for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Language: English
Position within the Curriculum: Compulsory Subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h] Contact hours – Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining Machinery & Equipment (V)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Excavation Machines (V)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Requirements:
-

Learning objectives / Skills:
Explaining the layout and operating mode of underground mining machinery in both soft rock and hard rock.
Designing the size of the machines by using formulas and experienced data
Deciding which kind and size of machinery is the right for a special application

Course outline:
Mining Machinery
a. Longwall Mining Equipment
b. Longwall Variations with special equipment
c. Maintenance
d. Jumbo Drill
e. Production Drill
f. Mine Support

Excavation Machines
g. Road Heading Machines
h. Tunnel Boring Machines
i. Continuous Miner
j. Load-Haul-Dump
k. Trucks
l. Infrastructure
m. Crusher
n. Water Management

Assessment:
Assignment (homework, exercise or presentation) (25%) and Oral (30 – 40 min) or Written (90 min) examination (75%)

Media:
Oral presentation with Power Point, Exercises and discussions

Literature
- SME Mining Handbook
- Equipment Management
- Mining Engineering Analysis
- Longwall Mining, Peng
- Strata Control in in-seam roadways, Junker

Additional Information:
-
Module 8 Advanced Rock Mechanics

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 8
Name of the Module: Advanced Rock Mechanics
Course(s): Advanced Rock Mechanics
Term: 2
Responsible person for the module: apl. Prof. Dr.-Ing. habil. Uwe Düsterloh
Lecturer: apl. Prof. Dr.-Ing. habil. Uwe Düsterloh
Language: English
Position within the Curriculum: Compulsory Subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Contact hours-/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Rock Mechanics (2L + 2T)</td>
<td>4</td>
<td>56/124</td>
<td>6</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Requirements: -

Learning objectives / Skills: Based on the lecture students are able to handle the basics of a geotechnical safety assessment for underground excavations. Students can determine geotechnical parameters for rock mass as well as parameters regarding constitutive models based on lab tests. They have the capability to compute the state of stress and strain in the rock mass surrounding underground excavations by using analytical solutions. Finally students can read, verify, validate and evaluate results given from numerical calculations to estimate static stability and tightness of underground structures.

Course Outline: * overview area of expertise * geological basics (structure and genesis of rock mass, earth history) * exploration techniques * lab testing (testing technique, analysis, parameter determination) * field testing * primary stress * rock mechanical calculations (analytical calculations, verification, validation, interpretation of numerical calculated results) * safety assessment (comparison between computed stresses and strength)

Assessment: Written Examination (120 min)

Media: Lecture, beamer presentation, lecture notes, exercises, experimental equipment

Literature:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>

Additional Information:
Module 9 Advanced Mine Surveying

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 9
Name of the Module: Advanced Mine Surveying

Course(s):
- Basics of Strata and Ground Movements
- Mine Mapping
- Remote Sensing
- Tutorial for Remote Sensing

Term: 2 and 3

Responsible person for the module: Prof. Busch

Lecturers: Prof. Busch

Language: English

Position within the Curriculum: Compulsory Subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact hours-/ Self-Study Time</td>
<td></td>
<td></td>
<td>FK</td>
</tr>
<tr>
<td>CP</td>
<td>MK</td>
<td>SK</td>
<td>SOK</td>
</tr>
<tr>
<td>Strata and Ground Movements (V)</td>
<td>1</td>
<td>14/40</td>
<td>6</td>
</tr>
<tr>
<td>Mine Plans (V)</td>
<td>1</td>
<td>14/22</td>
<td></td>
</tr>
<tr>
<td>Applied Remote Sensing (V)</td>
<td>1</td>
<td>14/22</td>
<td></td>
</tr>
<tr>
<td>Tutorial for Applied Remote Sensing (Ü)</td>
<td>1</td>
<td>14/40</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>4</td>
<td>56/124</td>
<td>6</td>
</tr>
</tbody>
</table>

Requirements:
- Students will understand geomechanical processes, from the development of an underground mining cavity up to the deformation of the ground surface: incl. possibilities for the detection of ground movements, classification of ground movements and methods to reduce impacts.
- Students acquire knowledge about the basics of mine mapping: authorization, preparation and composition of mine-plans in international comparison.
- Students learn abilities for documentation and visualization of mining activities.
- Students will understand physical basics of remote sensing and learn methods and software tools for applications related to mining activities, e.g. mineral exploration, mapping of environmental impacts, monitoring of ground movements and hazards.

Course Outline:
- Introduction to the topics rock and ground movements
- Methods for detection of ground movements and ground and object deformation
- Prediction of ground movements
- Subsidence from abandoned mines
- Risk assessment of suspected areas, measures to reduce mining damage
- Legal regulation of mining subsidence
- Cartographic design and illustrations
- Importance and international legal regulations of mine mapping
- Map projections, sections and perspective imaging
- Components of mine plans, national standards
- Preparation & layout and construction in mine plans
- Principles of satellite remote sensing
- Satellite & sensors: properties, search and ordering of data
- Digital Image processing with ENVI/IDL software
- Image enhancement, correction, classification and transformation
- Introduction to hyperspectral remote sensing for mineral exploration
- Lithological mapping using ASTER images
- Introduction and application of SAR for mapping of mining induced ground movements
<table>
<thead>
<tr>
<th>Assessment:</th>
<th>Written Examination (180 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media:</td>
<td>lecture, beamer presentation, lecture notes, computer-lab-course</td>
</tr>
</tbody>
</table>
National Mining Standards and Regulations, e.g. Markscheider Bergverordnung 1986 (Germany), Surveying practice and statutory plans; NCB; 1955 (England); Code of Federal Regulations, Mineral Resources (U.S. Government).
| Additional Information: | - |
Module 10 Mineral Processing

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>10</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Mineral Processing</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Mineral Processing</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Responsible person for the module:</td>
<td>Prof. A. Weber</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. A. Weber</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory Subject (PF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Processing Lecture and Tutorial 2V / 1Ü</td>
<td>3</td>
<td>42 / 48</td>
<td>3</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements:

- **Learning objectives / Skills:** This lecture is intended to outline the basic principles of mineral processing arranged in unit operations. In order to deepen the understanding of the challenges occurring in particular applications and to facilitate the orientation of the students within the field, importance will be attached to the equipment employed in mineral processing. Finally, to appreciate the interdependence of the various unit operations a few worked examples on plant practice will be integrated.

Course Outline:

- Introduction
- Fundamentals
- Size reduction
- Sizing separation
- Concentration separation
- Materials handling
- Plant practice

Assessment: Written Examination (90 min)

Media: Lectures, beamer presentations, script, exercises in class

Literature:

Additional Information: -
Module 11 Underground Mine Planning

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>11</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Underground Mine Planning</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Underground Mine Planning Tutorial for Underground Mine Planning</td>
</tr>
<tr>
<td>Term:</td>
<td>2/3</td>
</tr>
<tr>
<td>Responsible person for the module:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Langefeld</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Dr.-Ing. Franz Xaver Spachtholz</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory Subject (PF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact hours-/ Self-Study time</td>
<td>CP</td>
<td>FK</td>
<td>MK</td>
</tr>
<tr>
<td>Underground Mine Planning (2V)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
</tr>
<tr>
<td>Tutorial for Underground Mine Planning (U)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
</tr>
</tbody>
</table>

Requirements: Mining Basics, Economical Basics

Learning objectives / Skills: This course develops the knowledge and skills in aspects of underground mine planning and environmental control. At the end of the course, the student will be able to:

1. Identify, analyse and solve engineering problems resulting from the need to conduct mine planning and to enable the students to apply this knowledge in order to develop, discuss and justify proper engineering solutions to those tasks and problems.
2. Demonstrate practical skill necessary to undertake an underground mine planning survey together with necessary documentation, analysis and interpretation of results;
 a. Understand market needs and raw material politics (example to potash and salt)
 b. Compile technical, economic and other data required for mine planning;
 c. Understand reserve estimation methods
 d. Select a suitable mining method and related equipment for a given deposit;
 e. Plan and schedule mine development and production; run a draft pre-feasibility study (project work)

Course Outline:
- Objectives, Classification and general aspects Underground Mine Planning
- Stages of Mine Planning; Principles of Project Management
- Exploration and Classification of reserves
- Mine life / capacities
- Mining methods selection
- Equipment / Fleet selection
- Regulatory environment; Site closure / environmental design
- Capital and operating cost estimation

Assessment: Marked Project (30%) and written examination (70%, 90 min)

Media: Lecture (Activity-based Learning Approach), Beamer-Presentation, Skript, Tutorials, Group and Project works
Literature:
- Yang, B. (2012): Regulatory Governance and Risk Management: Occupational Health and Safety in the Coal Mining Industry
- Secondary literature-to be announced in the lecture

Additional Information:
The Tutorial is held in a block course within two days. The date is announced at the beginning of the semester.
Module 12 Advanced Surface Mining

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>12</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Advanced Surface Mining</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Advanced Surface Mining</td>
</tr>
<tr>
<td></td>
<td>Mining and Environment</td>
</tr>
<tr>
<td>Term:</td>
<td>3</td>
</tr>
<tr>
<td>Responsible person for</td>
<td>Univ.-Prof. Dr.-Ing. habil. Tudeskhi</td>
</tr>
<tr>
<td>the module:</td>
<td></td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Univ.-Prof. Dr.-Ing. habil. Tudeskhi</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the</td>
<td>Compulsory Subject (PF)</td>
</tr>
<tr>
<td>Curriculum:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Work Load [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact hours-/Independent hours</td>
<td>CP</td>
</tr>
<tr>
<td>Advanced Surface Mining</td>
<td>28/62</td>
<td></td>
</tr>
<tr>
<td>Mining</td>
<td>28/62</td>
<td></td>
</tr>
<tr>
<td>Mining and Environment</td>
<td>28/62</td>
<td></td>
</tr>
</tbody>
</table>

Requirements:

Advanced Surface Mining:
Students do learn special surface mining technologies. Aim of the course is to enable students to design open pit mines including the selection and dimensioning of mining equipment.

Mining and Environment:
Students will understand and critically consider the complex objectives, tasks and content of water management and reclamation, which are closely associated. After completion of the course they are enabled to interpret exploration study results and apply them to other projects.

Course Outline:

Advanced Surface Mining:
- factors influencing the selection and dimensioning of mining equipment
- availability and effectiveness of equipment
- selection and dimensioning of loading equipment
- selection and dimensioning of haulage equipment
- software-based selection and dimensioning of surface mining equipment
- drilling and blasting technology and dimensioning of blasting in open pits

Mining and Environment:
- soil physics, soil and rock mechanics
- hydrogeology and hydrology
- water management of open pits
- dewatering technologies
- dimensioning of water wells
- legal aspects of reclamation
- reclamation goals and technologies

Assessments:
Oral or written Examination (max. 90 minutes)

Media:
lecture, projector-presentation, lecture notes, mine planning software

Literature:
announcement in the lecture

Additional Information:
-
Module 13 Applied Rock Mechanics

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>13</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Applied Rock Mechanics</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Applied Rock Mechanics</td>
</tr>
<tr>
<td>Term:</td>
<td>3</td>
</tr>
<tr>
<td>Responsible person for the module:</td>
<td>apl. Prof. Dr.-Ing. habil. Uwe Düsterloh</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>apl. Prof. Dr.-Ing. habil. Uwe Düsterloh</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory Subject (PF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Contact hours-/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Rock Mechanics (2V+ 2U)</td>
<td>4</td>
<td>56/124</td>
<td>6</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Requirements:

- Students are able to handle various design techniques used in different mining areas (rock mass classification, room and pillar design, analytical solutions, calculation of subsidence, slope stability, selected earth statical analysis)

Course Outline:

- rock mass classification (RQD, ARMR, TQI, ..)
- room and pillar design, roof dimensioning
- analytical solutions for shafts and drifts in elastic, plastic and viscous rock mass
- calculation of subsidence
- dimensioning Longwall mining
- anchor
- slope stability
- settlement, slide stability, slice method

Assessment:

- Written Examination (120 min)

Media:

- Lecture, beamer presentation, lecture notes, exercises, experimental equipment

Literature:

Module 14 Seminar

<table>
<thead>
<tr>
<th>Degree:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>14</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Seminar</td>
</tr>
<tr>
<td>Term:</td>
<td>1</td>
</tr>
<tr>
<td>Responsible person für the module:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Langefeld</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Professors involved in the Masterprogram Mining Engineering</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory Subject (PF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hwp</th>
<th>Work load [h]</th>
<th>Contact hours-/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
</table>

Requirements:

Learning objectives / Skills: The Goal of this Module is, to give the students a deeper understanding of the topics of the compulsory lectures as well as gaining an insight on current research areas and topics. The Module aims at improving the students skills, to read and interpret scientific literature and to summarize own research results in a written report and to present the results in an oral presentation to an audience. The reading, understanding and summarizing skills learned during this course will help the students while working on their Master Thesis.

Assessment: Written Thesis (max. 25 pages), oral presentation (about 20 minutes) and participation in the discussion following the presentation

Media: Beamer presentation, Written Thesis, Handouts

Literature: General Literature will be given by the supervisor when the Seminar begins

Additional Information: -
Module 15 Industry Internship

Degree: M.Sc. Mining Engineering
Number of the Module: 15
Name of the Module: Industry Internship
Course(s): Industry Internship
Term: 1
Responsible person for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: -
Language: English
Position within the Curriculum: Compulsory Subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Contact hours/- Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Internship</td>
<td>1</td>
<td>14/166</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Requirements:
Learning objectives/ Skills: The Students get an insight into the practical work done in the industry. Additionally they get the possibility to enhance their social skills while working in teams and increase their experience presenting infront of groups.

Course Outline: During the Internship the students learn to work on a topic with minimal supervision in a short amount of time. The topics worked on are part of the day to day work within the company, research Institution or government institution.

Assessment: Written Report, and a presentation regarding the topics of the internship

Media: Written Report, Presentation

Literature: -

Additional Information: The Industry Internship can be completed either within the industry, an research institution or a governmental institution.
Module 16 Student Research Project

Degree: M.Sc. Mining Engineering
Number of the Module: 16
Name of the Module: Student Research Project
Course(s): Student Research Project
Term: 3 and 4
Responsible Person for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: Professors involved in the Masterprogram Mining Engineering
Language: English
Position within the Curriculum: Compulsory Subject (PF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Contact hours-/ Self-Study Time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Research Project</td>
<td>3</td>
<td>42/138</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Requirements:

- Learning objectives / Skills: The Student Research Project gives the students the possibility to intensify their knowledge of the topics discussed in the lectures as well as to get an insight into current research topics. Besides the technical skills required to do so, the students will have a chance to improve their soft skills, as the project offers them a platform for progress reporting, testing and sharing of ideas and group discussions on the way forward.

Course outline: Topics according to the lectures of the Master Mining Engineering
Assessment: Written Thesis (max. 20 pages per person) and a presentation of the (group) project

Media: Written Thesis, Presentation
Literature: General Literature will be given by the supervisor when the Student Research Project begins

Additional Information: A student research project can be given by all professors involved in the curriculum. It is possible to do it at university or in industry.
Module 17 Master Thesis

<table>
<thead>
<tr>
<th>Degree:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>17</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Master Thesis</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Master Thesis</td>
</tr>
<tr>
<td>Term:</td>
<td>4</td>
</tr>
<tr>
<td>Responsible person for the module:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Langefeld</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Professors of the Institute of Mining</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory Subject (PF)</td>
</tr>
</tbody>
</table>

Course Type

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work load [h] Contact hours-/Indepandant studies</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
<td>14</td>
<td>630</td>
<td>21</td>
<td>30</td>
<td>25</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

Requirements:

Admission according to § 11 Absatz 4 of the „Allgemeine Prüfungsordnung“ (APO).

Learning objectives / Skills:

During the Master Thesis the students can apply their Mining Engineering knowledge to a specific problem or research topic. This gives the student the possibility to show, that he has learned to work independently on complex scientific topics, approach the topic in a well-structured and scientific manner and express the results in a written report. Additionally the students can prove that they are able to present their results to an audience during a presentation which includes a followup discussion with the audience.

Course outline:

Topics according to the lectures of the Master Mining Engineering

Assessment:

Written Thesis and an oral presentation of the results

Media:

Beamer, Written Thesis, oral presentation

Literature:

General Literature will be given by the supervisor when the Master Thesis begins

Additional Information:

A topic for the Master Thesis can be given by all professors involved in the curriculum. It is possible to do it at university or in industry.
Module 18.1 Specialized Driving Methods

Degree Programm: M.Sc. Mining Engineering
Number of the Module: 18.1
Name of the Module: Specialized Driving Methods
Course(s): Specialized Driving Methods
Term: 3
Responsible person for the Module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturers: Dr. rer. nat. Nikolaos Polysos
Language: English
Position within the Curriculum: Compulsory optional subject (WPF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Work Load [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Driving Methods</td>
<td>28/62</td>
<td>3</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Requirements:
- Learning objectives / Skills:
 - This course is intended to provide treatment for a sufficient roadway support design for the drivage and utilization phase at great mining depths. The topics would concentrate on more practice orientated engineering perspectives and take into account the complete roadway lifecycle. The following topics will be treated:
 - Fundamental knowledge and practical application in geotechnical and geomechanical principles of strata and benefits of the rockmass classification.
 - The effect of depth-related stress and additional load generated from mining activities and prediction of roadway convergence in consideration of geomechanical evaluation.
 - Selection of the roadway development methods and mechanical equipment.
 - Roadway support systems and elements, with emphasis on the rockbolt application as well as cementitious construction materials and techniques and process of grout/resin injection.
 - Structured roadway planning process and support calculation methods.
 - Function of various measuring instruments and roadway monitoring during development and use in frame of ground control.

Course Outline:
1. Geotechnical principles of strata control
2. Rock stress and stress field in multiple seam mining
3. Rock and roadway deformation
4. Heading and support systems
5. Roadway development and support design methods and calculations
6. Roadway monitoring

Assessments:
- Written examination (60 min)

Media:
- Oral presentation with powerpoint

Literature:
Peng S.S. (2008)
Coal Mine Control
750 p., Dep. of Mining Engineering and Mineral Resources, Morgantown (WV)

Hoek E. (2007)
Practical Rock Engineering
Downloadable at: https://www.rocscience.com/education/hoeks_corner

Witthaus H., Polysos N (2007)

Rock Mechanics
For underground mining
626 p., Springer, 3rd edition, XVIII

Handbook on Strata Control
146 p., CTP, Cape Town

Additional Information: -
Module 18.2 Project Development in Underground Primary Production

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module</td>
<td>18.2</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Project Development in Underground Primary Production</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Project Development in Underground Mining considering operative and economic aspects</td>
</tr>
<tr>
<td>Term:</td>
<td>4</td>
</tr>
<tr>
<td>Responsible person for the Module</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Langefeld</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr.-Ing. Thomas Hollenberg</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum</td>
<td>Compulsory optional subject (WPF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Contact hours-/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Development in underground mining considering operative and economic aspects (V+Ü)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Requirements:

Knowledge of tendering procedures, contract types and calculation basis; Evaluation of projects considering project and contract risk; assessment and comprehension of different contract types; calculation of budget and offers.

Course Outline:

1. Progress of project development
2. Project charter
3. Contract types
4. Tendering procedures
5. Economic aspects
6. Type of costs and calculation of costs
7. Invitation for tender
8. Claim management

Assessments:

Written examination (90 min)

Media:

Oral presentation with powerpoint

Literature:

- Verdingungsordnung für Bauleistungen
- Honorarordnung für Architekten und Ingenieure
- Bürgerliches Gesetzbuch
- Bau-Geräte Liste
- Mine and Mill Equipment Costs 2012
- Further literature follows during lecture

Additional Information:

-
Module 18.3 Underground Blasting

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 18.3
Name of the Module: Underground Blasting
Course(s): Underground Blasting and Explosives Engineering
Term: 4
Responsible persons for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lectures: Dr.-Ing. Rüdiger Triebel
Language: English
Position within the Curriculum: Compulsory optional subject (WPF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Blasting (2V)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements: Basics knowledge about underground mining methods and mining processes

Learning objectives / Skills: Underground Blasting and Explosives Engineering

Underground blasting is embedded in quite complex international and national regulations and mine specific processes so that not only shot firers but also responsible mining engineers must have an according insight into this field.

Participants of the course will be introduced into conventional mining by drill and blast methods and be enabled to understand the principles of underground blasting. Therefore historic data, basic definitions and the according legal framework are presented. This is followed by explanations regarding the nature of explosives and initiation systems.

Participants will learn to understand and to layout underground drill and blast patterns. Development and application of different underground blasting methods is taught during the lectures, underground blast examples are analyzed. Participants will learn special safety awareness in explosives use.

Course Outline: Underground Blasting and Explosives Engineering

- Basics of underground blasting applications
- Introduction into explosives regulations
- Explosives and initiation systems
- Blasting methods
- Blasting emissions
- Safety aspects

Assessment: Oral or written Examination, duration 45 minutes (oral) or 90 minutes (written)

Media: Presentations, basic calculations, demonstrations, videos

Literature:
- Apel/Keusgen: Sprengstoffgesetz; Loseblattwerke Carl Heymanns Verlag KG; Stand 2014.
• Breidung, K. P.: Im Mittelpunkt Sprengstoff; MSW-Chemie GmbH; 1999.
• Deutsche Gesetzliche Unfallversicherung e.V.: BGR/GUV-R 241 Regel
Sprengarbeiten; Berlin; 2012.
• DIN 20163, Sprengtechnik, Begriffe, Einheiten Formelzeichen; Beuth Verlag
• Dyno Nobel: Blasting and Explosives Quick Reference Guide; 2010;
• Fornefeld, M.: Grundsätzliche Untersuchungen zur sprengtechnischen
Herstellung großräumiger Deponiekammern im Steinsalzgebirge;
• Grothe, D.; Hammelmann, F.: Das nichtelektrische Zündsystem EXEL; Nobel
• Hammelmann, Albrecht: Gewerbliche Sprengmittel bei untertägigen
Sprengarbeiten, Nobel Hefte 2006, Seite 9-18
• Hammelmann, F.: i-kon™ - Das elektronische Zündsystem von Orica; Nobel
• Hammelmann, F; Reinders, P.; Vogel, G: Zündtechnik im Wandel der Zeit –
• Hammelmann, F; Schneider, H.; Staskiewicz, L; Straeten, T.: Sprengstoffe im
Wandel der Zeit unter besonderer Betrachtung ihrer Leistungsbeurteilung;
Sprenginfo 27 (2005) 3, Seite 19-34.
• Heinze, H.: Sprengtechnik, Anwendungsgebiete und Verfahren; Deutscher
• Held, M: Betrachtung von Leistungsdaten verschiedener Sprengstoffe;
• ISEE Blaster s Handbook™; International Society of Explosives Engineers;
Cleveland OH; 2011.
• Köhler, J.; Meyer, R.; Homburg, A.: Explosivstoffe; WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim; 2008.
• Krebs, H.; Vogel, G.: Die Stellung von U- und HU-Zündern in der
Zünderklassifizierung (Klassen I bis IV) und die Auswirkungen für die
Sprengpraxis; Sprenginfo 34, 2012 3, Seite 14-21.
• LHS Germany, Laden Sprengen Sicherheit 2014/2016; Nordheim v. d. Rhön;
2014.
• Lück, H.: Schießen mit neuen nitroglyzerinfreien AN-Sprengstoffen; Kali und
Steinsalz, Band 4, Heft 1, 1964, Seite 1-8.
• Olofson, S. O.; Applied explosives technology for construction and mining;
Applex AB, Ärla; 2002.
• Persson, P.-A.; Holmberg, R; Jaimin, L.: Rock blasting and explosives
1994.
• Roschlau, H.: Sprengen, Theorie und Praxis; Deutscher Verlag für
Grundstoffindustrie; Leipzig, Stuttgart; 1993.
• Schillinger, R.: Sprengtechnik und Umwelt in der Praxis; Carl Hanser Verlag,
München; 2009.
• Schwarz, S.: Messung toxischer Schwadenbestandteile von gewerblichen
Sprengstoffen - Erste Ergebnisse; Sprenginfo Nr. 3, 2005, Seite 33-38.
• Spod, U: Überlagerung der NOx-Belastungen auf Baustellen unter Tage
infolge Dieselmotoremissionen und Sprengbetrieb; NO2-Workshop des FAD
Additional Information:

Excursions to mines and possibly to explosives manufacturers to learn about the practical use of explosives in drill and blast operations.
Module 18.4 Software for Underground Mine Planning

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 18.4
Name of the Module: Software for Underground Mine Planning
Course(s): Software for Underground Mine Planning
Term: 3
Responsible person for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Language: English
Position within the Curriculum: Compulsory optional subject (WPF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>SPW</th>
<th>Work Load [h]</th>
<th>ECTS</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Software for Underground Mine Planning (2V)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements: Underground Mine Planning

Learning objectives / Skills: This course provides an introduction to planning software for underground mining activities. The learning objective include to apply the knowledge of the mine planning process. Students will be able to develop, design and model a complete mine layout on the basis of all available information as well as to identify, formulate, analyse and solve engineering problems resulting from the need to conduct underground mine planning and to enable the students to apply this knowledge in order to develop, discuss and justify proper engineering solutions to those tasks and problems.

Course Outline:
- Introduction Mine Planning Software
- Basics
- Borehole Information
- Triangulation
- Block Modeling
- Underground Design
- Project

Assessment: Assignment (20%) and oral (30 min) or written examination (90 min, 80%)

Media:
- Lecture (Activity-based Learning Approach), Beamer-Presentation, Skript, Laboratory (PC), Group and Project works

Literature:
- Additional secondary literature-to be announced in the lecture.

Additional Information: -
Module 18.5 Advanced Drilling Engineering II

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>18.5</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Advanced Drilling Engineering</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Underground Blasting and Explosives Engineering, Advanced Drilling Technology II</td>
</tr>
<tr>
<td>Term:</td>
<td>4</td>
</tr>
<tr>
<td>Responsible persons for the module:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Langefeld, PD Dr. Dr.-Ing. habil. Catalin Teodoriu</td>
</tr>
<tr>
<td>Lectures:</td>
<td>PD Dr. Dr.-Ing. habil. Catalin Teodoriu</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory optional subject (WPF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h]</th>
<th>Contact hours-/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Drilling Engineering II (2V)</td>
<td>2</td>
<td>28/62</td>
<td></td>
<td>3</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements:
Advanced Drilling Engineering I

Learning objectives / Skills:
- Specialized knowledge of drilling technology, including machines and special application, other than oil and gas drilling
- Advanced Applications in the Drilling Practice outside oil and gas activities.
- Students will have the chance to perform live demonstration using hands on teaching equipment or building new setups to demonstrate their tasks.
- Additionally this course offers the opportunity to learn about team work

Course Outline:
- Drilling fluids for HPHT Conditions
- Drilling for Diamonds
- Directional drilling with application for tunneling
- Drilling and Well Construction for Salt Caverns
- Salt Saturated cementing of wells
- Well Integrity
- Horizontal Directional Drilling
- Case Studies

Assessment:
Oral (30 min) or written (90 min) Examination

Media:
Presentations, demonstrations, videos

Literature:
List follows during lecture.

Additional Information:
-
Module 18.6 Natural Gas Storage in Rock Caverns

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>18.6</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Natural Gas Storage in Rock Caverns</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Natural Gas Storage in Rock Caverns</td>
</tr>
<tr>
<td>Term:</td>
<td>3</td>
</tr>
<tr>
<td>Responsible person for the module:</td>
<td>Univ. Prof. Dr.-Ing. habil. K.-H. Lux</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Univ. Prof. Dr.-Ing. habil. K.-H. Lux</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory optional subject (WPF)</td>
</tr>
</tbody>
</table>

Course Type

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Contact hours/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas storage in rock caverns (2V)</td>
<td>28/62</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Requirements:
Advanced Rock Mechanics

Learning objectives / Skills:
Thermodynamic and geomechanic principles of gas storage in salt and rock caverns. Geomechanical stability criteria (Prof. Lux), design, construction and operation of cavern storages

Course Outlines:
- * introduction, media for storage and operation principles
- * gas storage in salt caverns: geological conditions, planning criteria for exploration and drilling, geomechanical conditions and design of caverns, thermodynamic conditions
- * operation fundamentals: leaching techniques/control, completion, surface facilities, storage operation, capacity characteristics, optimization strategies
- * field cases: selected examples
- * storage of liquids in mined caverns

Assessments:
Written examination (90 min)

Media:
Lecture, beamer presentation, lecture notes

Literature:
given parallel to lecture, enclosed in lecture notes

Additional Information:
-
Module 18.7 Advanced Underground Mining

Degree Programme: M.Sc. Mining Engineering
Number of the Module: 18.7
Name of the Module: Advanced Underground Mining
Course(s): Underground Mining – Special Applications
Term: 3
Responsible person for the module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Language: English
Position within the Curriculum: Compulsory optional subject (WPF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>hpw</th>
<th>Work Load [h] Contact hours –/ Self-Study time</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Mining – Special Applications (2V)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

Requirements: -
Learning objectives / Skills:
- Explaining the specialities of very deep mining and deep sea mining
- Designing a hard rock / soft rock application in a mine with all important items (road heading, extraction, infrastructure, equipment)
- Explaining sustainability and exercise in different issues

Course Outline:
The course outline can vary over the years. They depend on actual developments and interest of the students. For example:
- Special requirements to very Deep Mining
- Sustainability
- Deep Sea Mining
- Mining in several countries
- Project
- Lectures from partner universities

Assessments: Assignment (homework, exercise, presentation) (25%) and Oral (30 – 40 min) or Written (90 min) examination (75%)

Media: Oral presentation with Power Point, Exercises and discussions

Literature:
- Sme Mining Handbock
- Sustainable Management of Mining Operations
- Mining Engineering Analysis

Additional Information: The course is possibly held in blocks because of different lecturers. The dates are announced at the beginning of the semester
Module 18.8 Underground Emergency Response I

Degree Programme: M.Sc. Mining Engineering
Number of Module: 18.8
Name of Module: Underground Emergency Response I
Course(s): Basics of Fire Protection and Mine Rescue
Term: 3
Responsible Person for the Module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: Dr.-Ing. Walter Hermülheim
Language: English
Position within the Curriculum: Compulsory optional subject (WPF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>SWS</th>
<th>Work Load [h]</th>
<th>ECTS</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of Fire Protection and Mine Rescue (2L)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements: Underground work experience (internship). Basic knowledge of mine layout, mineral extraction and ventilation methods in coal and non coal mining.

Learning objectives/Skills: Develop an understanding for necessities, logical relations and methods concerning the prevention of catastrophic accidents in mining (FK/SK). Enable a production engineer to act safely and properly in case of an unexpected mine emergency (MK/SOK).

Assessment: Written examination (120 min).

Media: Presentations, tuition talks, group exercises. Lecture notes & selected current publications & bibliography as pdf-download.

Literature:
- Breslin, J. A.: One Hundred Years of Federal Mining Safety and Health

Additional selected literature on mine safety, e.g. regulations, conference papers, and mine rescue handbooks/training materials available online:
- esb.bezreg-arnsberg.nrw.de (in German)
- www.securmine.net
- www.atemschutzzentrum.net (in German)
- www.cdc.gov/niOSH/mining
- www.deutsche-grubenrettung.de (in German)
- www.hauptstelle.at (in German)
- www.hse.gov.uk
- www.lrws.gov.sk.ca
- www.minerescue.org
- www.minesrescue.co.za
- www.msha.gov/MineRescue
- www.qrc.org.au/conference
- www.usmra.com
- www.workplacesafetynorth.ca

Additional Information: Block course (4 days)
Module 18.9 Underground Emergency Response II

Degree Programme: M.Sc. Mining Engineering
Number of Module: 18.9
Name of Module: Underground Emergency Response II
Course(s): Specific Topics of Fire Protection and Mine Rescue
Term: 4
Responsible Person for the Module: Univ.-Prof. Dr.-Ing. Oliver Langefeld
Lecturer: Dr.-Ing. Walter Hermülheim
Language: English
Position within the Curriculum: Compulsory optional subject (WPF)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>SWS</th>
<th>Work Load [h]</th>
<th>ECTS</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Topics of Fire Protection and Mine Rescue (2L)</td>
<td>2</td>
<td>28/62</td>
<td>3</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Requirements: Underground work experience (internship).
Basic knowledge of mine layout, mineral extraction and ventilation methods in coal and non coal mining.

Learning objectives/ Skills: Develop an understanding for necessities, logical relations and methods concerning the prevention of catastrophic accidents in mining (FK/ SK). Enable a production engineer to act safely and properly in case of an unexpected mine emergency (MK/ SOK).

Course Outline: Specific Topics of Fire Protection and Mine Rescue:
Recap of basics lecture, designing and equipping a mine rescue station, breathing apparatus for special purposes, rescue of entrapped persons, communication and stress during mine rescue operations, public relations and press work.
Explosion protection and explosive dust control in collieries.
Spontaneous combustion fire guideline, underground nitrogen and mortar matter supply, rigid foam processing, design of fire extinguishing systems, gas testing and gas analysis, Graham’s Ratio and Coward-Diagrams, control of explosion prone fires.
Tunnel fire safety, mine safety in developing countries.
Group exercises: Examples of operational mine rescue work, underground incident scenarios, fighting a spontaneous combustion fire.

Assessment: Written examination (120 min).

Media: Presentations, tuition talks, group exercises.
Lecture notes & selected current publications & bibliography as pdf-download.

Literature:

Additional Information:
Block course (4 days), incl. excursion to Hauptstelle für das Grubenrettungswesen (Clausthal Mine Rescue Center), Berufsgenossenschaft Rohstoffe und Chemische Industrie, BG RCI, Berliner Straße 2, 38678 Clausthal-Zellerfeld (4 hours)
Module 18.10 Sustainability in Underground Mining

<table>
<thead>
<tr>
<th>Degree:</th>
<th>M.Sc. Mining Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the Module:</td>
<td>18.10</td>
</tr>
<tr>
<td>Name of the Module:</td>
<td>Sustainability in Underground Mining</td>
</tr>
<tr>
<td>Course(s):</td>
<td>Sustainability in Underground Mining</td>
</tr>
<tr>
<td>Term:</td>
<td>4</td>
</tr>
<tr>
<td>Responsible Person for the Module:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Langefeld</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>NN</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Position within the Curriculum:</td>
<td>Compulsory optional Subject (WPF)</td>
</tr>
</tbody>
</table>

Course Type | **hpw** | **Work Load [h]** | **Contact hours-/ Self- Study time** | **CP** | **FK** | **MK** | **SK** | **SOK** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainability in Underground Mining</td>
<td>2</td>
<td></td>
<td>28/62</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements:

Learning objectives / Skills:

- Understanding sustainability and the importance of it; Current state of art of sustainability in mining; Providing the basics to lead the students to think about sustainability in the mining industry; Improving presentation skills

Course Outline:

- Discussion of the concept of sustainability and the understanding of it; Overview of sustainability in the mining sector; Concepts related to sustainability; Case study with LCA (Life Cycle Assessment) based on social, environmental and economic factors and theoretical foundations; Current policy in Europe; Discussion of benefits and drawbacks of the development

Assessment

- Assignment (homework, exercise, presentation) (25%) and Oral (30 – 40 min) or Written examination (90 min, 75%)

Media:

- lecture, projector-presentation, lecture notes

Literature:

- Will be given in the lecture

Additional Information:

- The course is possibly held in blocks. The dates are announced at the beginning of the semester