## Inhaltsverzeichnis

### I Bachelorstudiengang Angewandte Mathematik

**Mathematik**
- Analysis (Grundmodul) .................................................. 11
- Analysis (Aufbaumodul) .................................................. 13
- Lineare Algebra und diskrete Strukturen (Grundmodul) ............. 15
- Lineare Algebra und diskrete Strukturen (Aufbaumodul) ............ 17
- Wahrscheinlichkeitstheorie ............................................. 19
- Stochastische Simulation und Statistik ............................... 21
- Kombinatorische Optimierung .......................................... 23
- Lineare Optimierung ..................................................... 25
- Numerische Mathematik I ............................................... 27
- Numerisches Praktikum .................................................. 29
- Numerische Mathematik II .............................................. 31
- Fourieranalysis .......................................................... 33
- Partielle Differentialgleichungen mit Ergänzungen .................. 35
- Funktionalanalysis mit Ergänzungen .................................. 37
- Funktionentheorie mit Ergänzungen ................................... 39
- Praktische Arbeit/Studienarbeit ....................................... 41
- Abschlussarbeit .......................................................... 43

**Informatik**
- Programmierung, Algorithmen und Datenstrukturen (PADS) ........ 47
- Automatentheorie und Formale Sprachen .............................. 49
- Einführung in das Programmieren ...................................... 51
- Grundlagen der Wirtschaftsinformatik .................................. 53
- Rechnerarchitektur und Rechnernetze ................................. 55
- Künstliche Intelligenz .................................................... 57
- Graphische Datenverarbeitung ......................................... 59

**Ingenieurwesen**
- Einführung in das Ingenieurwesen ..................................... 63
- Technische Mechanik I ................................................... 65
- Technische Mechanik II .................................................. 67
- Technische Mechanik III ................................................ 69
- Regelungstechnik I ........................................................ 71
- Regelungstechnik II ...................................................... 73
- Messtechnik I ............................................................. 75
- Signalübertragung ........................................................ 77
Betriebswirtschaftslehre
Einführung in die Betriebswirtschaftslehre .............................................. 81
Grundlagen der Betriebswirtschaftslehre ................................................... 83
Unternehmensführung ............................................................. 85
Investition und Finanzierung .......................................................... 87
Unternehmensrechnung 1 ............................................................ 89

II Masterstudiengänge

Mathematik
Funktionalanalysis .............................................................. 95
Einführung in die Zahlentheorie ..................................................... 97
Algebra ................................................................. 99
Funktionentheorie ............................................................ 101
Partielle Differentialgleichungen ................................................ 103
Operatortheorie ............................................................ 105
C*-Algebren ............................................................... 107
Dirichletformen und Markovprozesse ........................................ 109
Operatorhalbgruppen .......................................................... 111
Lie-Gruppen ............................................................... 113
Spektraltheorie ............................................................. 115
Stochastische Spektralanalysis ................................................... 117
Einführung in die Theorie Sobolev'scher Räume ............................. 119
Harmonische Analyse .......................................................... 121
Spezielle Funktionen .......................................................... 123
Numerische Mathematik III ....................................................... 125
Finite-Elemente-Methoden ......................................................... 127
Finite-Volumen-Methoden ......................................................... 129
Parallele Numerik ............................................................. 131
Approximationstheorie .......................................................... 133
Finanznumerik ................................................................. 135
Stochastische Simulation ......................................................... 137
Angewandte stochastische Prozesse I ......................................... 139
Angewandte stochastische Prozesse II ......................................... 141
Datenanalyse und Datenmanagement ....................................... 143
Stochastische Analyse heuristischer Optimierungsverfahren ............. 145
Stochastische dynamische Optimierung ........................................ 147
Warteschlangentheorie .......................................................... 149
Luftverkehrsmanagement ........................................................ 151
Nichtlineare Optimierung ........................................................ 153
Graphentheorie ............................................................... 155
Ganzzahlige Optimierung ......................................................... 157
Optimierungsheuristiken ........................................................ 159
Multikriterielle Optimierung ....................................................... 161
Spezielle (kombinatorische) Optimierungsprobleme ....................... 163
Kombinatorik ............................................................... 165
Spieltheorie ................................................................. 167
Seminar .............................................................. 169
OR im Flugverkehr ........................................................... 171
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR in der Telekommunikation</td>
<td>173</td>
</tr>
<tr>
<td>Abschlussarbeit AM</td>
<td>175</td>
</tr>
<tr>
<td>Abschlussarbeit OR</td>
<td>177</td>
</tr>
<tr>
<td><strong>Informatik</strong></td>
<td></td>
</tr>
<tr>
<td>Erweiterte Grundlagen der Softwaretechnik</td>
<td>181</td>
</tr>
<tr>
<td>Grundlagen der Datenbanktheorie</td>
<td>183</td>
</tr>
<tr>
<td>Erweiterte Grundlagen der Datenbanken</td>
<td>185</td>
</tr>
<tr>
<td>Multiagentensysteme</td>
<td>187</td>
</tr>
<tr>
<td>Data Mining</td>
<td>189</td>
</tr>
<tr>
<td>Selbstoneigendende Systeme</td>
<td>191</td>
</tr>
<tr>
<td>Grundlagen der Graphischen Datenverarbeitung</td>
<td>193</td>
</tr>
<tr>
<td>Erweiterte Grundlagen der Graphischen Datenverarbeitung</td>
<td>195</td>
</tr>
<tr>
<td>Integrierte Anwendungssysteme</td>
<td>197</td>
</tr>
<tr>
<td>Electronic Commerce/Electronic Business</td>
<td>199</td>
</tr>
<tr>
<td><strong>Ingenieurwesen</strong></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Strömungsmechanik</td>
<td>203</td>
</tr>
<tr>
<td>Strömungsmechanik Vertiefung</td>
<td>205</td>
</tr>
<tr>
<td>Numerische Strömungsmechanik</td>
<td>207</td>
</tr>
<tr>
<td>Numerische Akustik</td>
<td>209</td>
</tr>
<tr>
<td>Kontinuumsmechanik</td>
<td>211</td>
</tr>
<tr>
<td>Digitale Regelungssysteme</td>
<td>213</td>
</tr>
<tr>
<td>Messtechnik II</td>
<td>215</td>
</tr>
<tr>
<td>Systemtheorie</td>
<td>217</td>
</tr>
<tr>
<td><strong>Betriebswirtschaftslehre</strong></td>
<td></td>
</tr>
<tr>
<td>Operations Management</td>
<td>221</td>
</tr>
<tr>
<td>Projektplanung</td>
<td>223</td>
</tr>
<tr>
<td>Logistik</td>
<td>225</td>
</tr>
<tr>
<td>Marktforschung</td>
<td>227</td>
</tr>
<tr>
<td>Produktion und Logistik</td>
<td>229</td>
</tr>
<tr>
<td>Projektplanung und Marktforschung</td>
<td>233</td>
</tr>
<tr>
<td>Projektmanagement und Planung II</td>
<td>235</td>
</tr>
<tr>
<td>Marktforschung II</td>
<td>237</td>
</tr>
<tr>
<td>Modellierung und Planung von Logistiksystemen</td>
<td>239</td>
</tr>
<tr>
<td>Anwendung Operations Management</td>
<td>241</td>
</tr>
<tr>
<td>Produktionsplanung in der Prozessindustrie</td>
<td>243</td>
</tr>
<tr>
<td>Operations Management für die Dienstleistungsproduktion</td>
<td>245</td>
</tr>
</tbody>
</table>
Teil I

Bachelorstudiengang
Angewandte Mathematik
Mathematik
### Analysis (Grundmodul)

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Analysis (Grundmodul)</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Analysis I und II</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesungen Analysis I und II mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. L.G. Lucht, Prof. Dr. M. Rössler</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. und 2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich ab WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis I</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Analysis I</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Analysis II</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Analysis II</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis I</td>
<td>60</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>Übungen zur Analysis I</td>
<td>30</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Analysis II</td>
<td>60</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>Übungen zur Analysis II</td>
<td>30</td>
<td>90</td>
<td>120</td>
</tr>
</tbody>
</table>

| Kreditpunkte:       | 18          |
| Voraussetzungen:    | Mathematikvorkurs empfohlen |

*Fortsetzung auf der Rückseite*
**Lernziele:** Die Studierenden sollen
- Grundbegriffe der Analysis erlernen,
- Verständnis für analytische Prinzipien und Beweismethoden entwickeln,
- zum Selbststudium und aktiver mathematischer Mitarbeit erzogen werden,
- eine Grundlage für das gesamte Studium, wie z. B. für die Aufbaumodule Analysis III, Funktionentheorie, Funktionalanalysis, Numerische Mathematik, Wahrscheinlichkeitstheorie erhalten.

**Lehrinhalt:**
- Natürliche Zahlen, Induktionsprinzip, Summen, Produkte, Ungleichungen;
- reelle und komplexe Zahlen, Konvergenz von Folgen und Reihen, reelle Funktionen;
- Stetigkeit, Differenzierbarkeit, Differentiationsregeln, Taylorentwicklung;
- Funktionenfolgen, Funktionenreihen, gleichmäßige Konvergenz;
- Integration und Integrationsregeln, uneigentliche Integrale, Gamma-Funktion, metrische Räume;
- Funktionen mehrerer Variabler, Differentiation im \( \mathbb{R}^n \);
- Satz über Umkehrfunktion, Satz über implizite Funktionen;
- lokale Extrema, Extrema mit Nebenbedingungen;

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Semesterabschlussklausuren und Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medienformen:</strong></td>
<td>Tafel, Folien, Skripte</td>
</tr>
<tr>
<td><strong>Literatur:</strong></td>
<td>Forster, O.: Analysis 1 und 2, Vieweg</td>
</tr>
<tr>
<td></td>
<td>Königsberger, K.: Analysis 1 und 2, Springer</td>
</tr>
<tr>
<td></td>
<td>Heuser, H.: Lehrbuch der Analysis 1, Teubner</td>
</tr>
</tbody>
</table>
### Analysis (Aufbaumodul)

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Analysis (Aufbaumodul)</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Analysis III</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Analysis III mit begleitenden Übungen und Seminar (optional)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

#### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis III</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Analysis III</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Seminar (optional)</td>
<td>S</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

#### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis III</td>
<td>60</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>Übungen zu Analysis III</td>
<td>30</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Seminar (optional)</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9+3 (V+S)

Voraussetzungen: Analysis Grundmodul

*Fortsetzung auf der Rückseite*
**Lernziele:** Die Studierenden sollen
- Lösungsmethoden für gewöhnliche Differentialgleichungen lernen,
- Kenntnisse der Theorie metrischer Räume erwerben,
- Grundzüge der Theorie des Lebesguemaßes und des Lebesgueintegrals im \( \mathbb{R}^n \) erlernen,
- mehrdimensionale Integrale, Volumina, Oberflächen berechnen lernen,
- die Sätze von Gauß, Green, Stokes verstehen.

**Lehrinhalt:**
- Gewöhnliche Differentialgleichungen;
- Topologische Grundbegriffe, normierte Räume, Kompaktheit, Stetigkeit;
- Borelmengen, Meßbarkeit;
- Lebesgue-Integral im \( \mathbb{R}^n \), Konvergenzsätze, Satz von Fubini, Transformationssatz und Beispiele;
- Vergleich von Riemann- und Lebesgue-Integral;
- Einführung in die \( L^p \)-Räume;
- Berechnung mehrdimensionaler Integrale, Volumina, Oberflächen;
- Integration auf Mannigfaltigkeiten, Sätze von Gauß und Stokes.

**Studien-/Prüfungsleistungen:**
- Klausur für die Vorlesung, erfolgreiche Teilnahme einschließlich Vortrag für das Seminar

**Medienformen:**
- Tafel, Folien, Skripte

**Literatur:** Mögliche Empfehlungen:
- Elstrodt, J., Maß- und Integrationstheorie, Springer
- Forster, O., Analysis 3, Vieweg
- Heuser, H., Lehrbuch der Analysis 2, Teubner
- Lang, S., Introduction to Differentiable Manifolds, North Holland
- Rudin, W., Real and Complex Analysis, McGraw Hill
- Königsberger, K., Analysis, Springer
## Lineare Algebra und diskrete Strukturen (Grundmodul)

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Lineare Algebra und diskrete Strukturen (Grundmodul)</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Lineare Algebra und diskrete Strukturen I und II</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesungen Lineare Algebra und diskrete Strukturen I und II mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. W. Klotz, Prof. Dr. J. Sander</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. und 2. Semester</td>
</tr>
<tr>
<td>Modulldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich ab WS</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Lehrform</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Lineare Algebra und diskrete Strukturen I</td>
<td>V</td>
</tr>
<tr>
<td>Übungen zu Lin. Alg. und diskr. Str. I</td>
<td>Ü</td>
</tr>
<tr>
<td>Lineare Algebra und diskrete Strukturen II</td>
<td>V</td>
</tr>
<tr>
<td>Übungen zu Lin. Alg. und diskr. Str. II</td>
<td>Ü</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Lineare Algebra und diskrete Strukturen I</td>
<td>60</td>
</tr>
<tr>
<td>Übungen zu Lin. Alg. und diskr. Str. I</td>
<td>30</td>
</tr>
<tr>
<td>Lineare Algebra und diskrete Strukturen II</td>
<td>45</td>
</tr>
<tr>
<td>Übungen zu Lin. Alg. und diskr. Str. II</td>
<td>15</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>15</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Mathematikvorkurs empfohlen</td>
</tr>
</tbody>
</table>

*Fortsetzung auf der Rückseite*
**Lernziele:** Die Studierenden sollen
- Grundbegriffe und Methoden der Linearen Algebra und der Diskreten Mathematik kennenlernen;
- Intuition und Abstraktionsvermögen schulen;
- Verständnis für das axiomatische Vorgehen entwickeln;
- Basiswissen für das weitere Studium erwerben, insbesondere für die Module Analysis, Numerische Mathematik, Algebra, Lineare bzw. Kombinatorische Optimierung.

**Lehrinhalt:**
- Logische und mengentheoretische Grundlagen: Aussagenlogik, Mengen, Relationen, Abbildungen;
- kombinatorische Grundlagen: Permutationen, kombinatorische Wahrscheinlichkeiten;
- graphentheoretische Grundlagen;
- algebraische Grundlagen: Gruppen, Ringe, Körper;
- Vektorräume: Basis, Dimension, Unterräume, Summenraum, Quotientenraum;
- Lineare Abbildungen und Matrizen: Darstellung linearer Abbildungen durch Matrizen, Homomorphiesatz, Dimensionsformel, Dualraum, lineare Gleichungssysteme;
- Determinanten, Eigenvektoren und Eigenwerte: Berechnungsverfahren, Diagonalisierbarkeit;
- Skalarpfrodukte: Euklidische und unitäre Vektorräume, positive Definitheit;
- Bilinearformen, Hauptachsentransformationen;
- Geometrische Aspekte der Linearen Algebra.

**Studien-/Prüfungsleistungen:**
- Semesterabschlussklausuren und mündliche Prüfung

**Medienformen:**
- Tafel, Folien, Skript

**Literatur:**
- Fischer G.: Lineare Algebra, Vieweg, 2005
- Aigner M.: Diskrete Mathematik, Vieweg, 2004
### Lineare Algebra und diskrete Strukturen (Aufbaumodul)

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Lineare Algebra und diskrete Strukturen (Aufbaumodul)</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Lineare Algebra und diskrete Strukturen III</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Lineare Algebra und diskrete Strukturen III und Seminar (optional)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. W. Klotz, Prof. Dr. J. Sander</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

**Zuordnung zum Curriculum:** Pflichtmodul im Bachelorstudiengang Angewandte Mathematik

<table>
<thead>
<tr>
<th>Semester:</th>
<th>3. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineare Algebra und diskrete Strukturen III</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Seminar (optional)</td>
<td>S</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineare Algebra und diskrete Strukturen III</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Seminar (optional)</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 3+3 (V+S)

**Voraussetzungen:** Grundmodul Lineare Algebra und Diskrete Strukturen

**Lernziele:** Die Studierenden sollen
- Kenntnisse der Prinzipien und Methoden der Linearen Algebra vertiefen;
- die Normalformtheorie verstehen;
- exemplarische Anwendungen der Linearen Algebra kennenlernen.

*Fortsetzung auf der Rückseite*
**Lehrinhalt:**
- Spezielle lineare Abbildungen: Normale Abbildungen, selbstadjungierte Abbildungen, orthogonale und unitäre Abbildungen;
- Normalformtheorie: Minimalpolynom, Zerlegungssätze, Elementarteiler, Jordansche Normalform;

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Klausur für die Vorlesung, erfolgreiche Teilnahme einschließlich Vortrag für das Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Tafel, Folien, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Fischer G.: Lineare Algebra, Vieweg, 2005
Wahrscheinlichkeitstheorie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Wahrscheinlichkeitstheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WTheorie</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Grundlagen der anwendungsorientierten Stochastik</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Grundlagen der Wahrscheinlichkeitstheorie mit Übungen und Tutorien</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Wahrscheinlichkeitstheorie</td>
<td>V</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Vortragsübung und Tutorium zu Wahrscheinlichkeitstheorie</td>
<td>Ü/T</td>
<td>2+2</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Wahrscheinlichkeitstheorie</td>
<td>60</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>Vortragsübung und Tutorium zu Wahrscheinlichkeitstheorie</td>
<td>60</td>
<td>60</td>
<td>120</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9

Voraussetzungen: Grundmodule Analysis, Lineare Algebra und diskrete Strukturen

Lernziele: Die Studierenden sollen die grundlegenden Konzepte und Begriffe der Wahrscheinlichkeitstheorie kennenlernen und auf einfache Fragestellungen anwenden können. Die Vorlesungen bildet die Grundlage für weitere Veranstaltungen der Stochastik im Bachelor und im Master insbesondere im Bereich der stochastischen Prozesse, Optimierung und Simulation.

Fortsetzung auf der Rückseite
Lehrinhalt: Grundlagen der Wahrscheinlichkeitstheorie: Grundbegriffe der Maßtheorie, diskrete und allgemeine Wahrscheinlichkeitsräume, Zufallsvariable und Verteilung, stochastische Unabhängigkeit und bedingte Verteilung, Erwartungswert und Varianz, erzeugende Funktion und Transformierte, Konvergenzkonzepte und Grenzwertsätze, bedingter Erwartungswert

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer, online Skript, Skript</td>
</tr>
</tbody>
</table>

Literatur:
**Stochastische Simulation und Statistik**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td><strong>Stochastische Simulation und Statistik</strong></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SimStat</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Überblick über einige wichtige Konzepte der stochastischen Simulation und angewandten Statistik</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Stochastische Simulation und Statistik mit Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Modulldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Simulation und Statistik</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung zu Simulation und Statistik</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Simulation und Statistik</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übung zu Simulation und Statistik</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Grundmodule Analysis, Lineare Algebra und diskrete Strukturen, Modul Wahrscheinlichkeitstheorie

**Lernziele:** Die Studierenden sollen einen Überblick über die wichtigen Gebiete Stochastische Simulation und Statistik erhalten. Die Betonung liegt in den Veranstaltungen auf der Anwendbarkeit der mathematischen Konzepte.

**Lehrinhalt:** Zufallsgeneratoren, Erzeugung vorgegebener Verteilungen, ereignisorientierte Simulation; Punktschätzung, Konfidenzintervalle, Testtheorie, Tests bei Normalverteilung; statist. Auswertung von Simulationen, Anwendungen

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer, online Skript, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- J. Lehn, H. Wegmann, Einführung in die Statistik, Teubner Studienbücher, Stuttgart 1992
- H. Witting, Mathematische Statistik I, Teubner, Stuttgart 1985
Kombinatorische Optimierung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Kombinatorische Optimierung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>KombOpt</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Kombinatorische Optimierung mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. W. Klotz</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. W. Klotz, Prof. Dr. P. Huhn, u.a.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kombinatorische Optimierung</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Kombinatorischen Optimierung</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kombinatorische Optimierung</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Kombinatorischen Optimierung</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Grundmodul Lineare Algebra und diskrete Strukturen

**Lernziele:**
- Kenntnisse der grundlegenden Methoden und Werkzeuge der Graphentheorie,
- Fähigkeit zur Modellierung und Lösung realer Anwendungsprobleme durch graphentheoretische Problemstellungen

*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Erweiterte Grundlagen und Algorithmen der Graphentheorie (Digraphen, Zusammenhang, Planarität, Minimalgerüst, usw.), Komplexität von Algorithmen und Problemen, Kürzeste-Wege-Probleme und -algorithmen, Flußtheorie und -algorithmen, Maximalflüsse, Minimalkostenflüsse, Theorie und Algorithmen zur Bestimmung maximaler Matchings, Färbungsprobleme

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- W. Aldous: Graphs and Applications, Springer
- D. Jungnickel: Graphs, Networks and Algorithms, Springer
- B. Korte, J. Vygen: Combinatorial Optimization, Springer

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
### Lineare Optimierung

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td>Lineare Optimierung</td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td>LinOpt</td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Lehrveranstaltungen:</strong></td>
<td>Vorlesung Lineare Optimierung mit begleitenden Übungen</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. P. Huhn</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. P. Huhn, Prof. Dr. W. Klotz, u.a.</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch</td>
</tr>
<tr>
<td><strong>Zuordnung zum Curriculum:</strong></td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td><strong>Semester:</strong></td>
<td>5. Semester</td>
</tr>
<tr>
<td><strong>Moduldauer:</strong></td>
<td>1 Semester</td>
</tr>
<tr>
<td><strong>Angebotsturnus:</strong></td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Lehrformen:</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td><strong>Lehrform</strong></td>
</tr>
<tr>
<td>Lineare Optimierung</td>
<td>V</td>
</tr>
<tr>
<td>Übungen zur Linearen Optimierung</td>
<td>Ü</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Arbeitsaufwand:</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td><strong>Kontaktzeit</strong></td>
</tr>
<tr>
<td>Lineare Optimierung</td>
<td>45</td>
</tr>
<tr>
<td>Übungen zur Linearen Optimierung</td>
<td>15</td>
</tr>
</tbody>
</table>

| **Kreditpunkte:** | 6 |
| **Voraussetzungen:** | Grundmodule Analysis, Lineare Algebra und diskrete Strukturen |

**Lernziele:**
- Einsicht in die analytische und geometrische Struktur und Verständnis der Optimalitäts- und Dualitätstheorie linearer Optimierungsprobleme
- Kenntnis und Beherrschung der Lösungsverfahren
- Fähigkeit zur Modellierung, Lösung (ggf. mittels Software) und Interpretation linearer Optimierungsprobleme bei praktischen Problemstellungen

*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Polyedertheorie, Dualitätstheorie, Optimalitätstkriterien, Simplexverfahren, Innere-Punkte-Verfahren, Anwendungen bei ausgewählten Problemklassen (z.B. in der Ganzzahligen und Kombinatorischen Optimierung, insb. bei Netzwerkproblemen)

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- M. Bazaraa, J. Jarvis, H. Sherali: Linear programming and network flows
- K.H. Borgwardt: Optimierung, Operations Research und Spieltheorie
- V. Chvatal: Linear Programming
- A. Schrijver: Theory of linear and integer programming

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
**Numerische Mathematik I**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Numerische Mathematik I</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Numerik I</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Einführung in die Numerische Mathematik</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Numerische Mathematik I mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. L. Angermann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. L. Angermann, Dr. H. Behnke, PD Dr. B. Mulansky</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Mathematik I</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Numerischen Mathematik I</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Mathematik I</td>
<td>60</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>Übungen zur Numerischen Mathematik I</td>
<td>30</td>
<td>90</td>
<td>120</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 9

**Voraussetzungen:** Grundmodule Analysis, Lineare Algebra und diskrete Strukturen

*Fortsetzung auf der Rückseite*
**Lernziele:** Die Studierenden sollen
- Verständnis für die grundlegenden Prinzipien der Numerik entwickeln und die numerischen Basisverfahren für wichtige mathematische Probleme (Gleichungssysteme, Approximation, Integration usw.) sicher beherrschen.
- Einsicht und Intuition in die numerische Arbeitsweise und Sensibilität für spezielle numerische Problematiken wie fehlerbehaftete Arithmetik, Fehlerkontrolle und Komplexität entwickeln.
- in der Lage sein, den Einsatz numerischer Verfahren kompetent durchzuführen. Insbesondere sollen die Algorithmen unter Verwendung aktueller Software-Umgebungen (Matlab, Mathematica) angewendet und getestet werden.
- die zahlreichen Querverbindungen zu anderen mathematischen Gebieten wie Lineare Algebra, Analysis, Geometrie usw. erkennen.

**Lehrinhalt:** Computerarithmetik und Fehleranalyse, Lösung linearer und nichtlinearer Gleichungssysteme, Approximation, Integration, Differentiation

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Plato: Numerische Mathematik kompakt, Vieweg
- Stoer, Bulirsch: Numerische Mathematik I, Springer
- Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Teubner
- Quarteroni, Sacco, Saleri: Numerische Mathematik 1+2, Springer
## Numerisches Praktikum

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Numerisches Praktikum</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Numerik-Praktikum</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Numerisches Praktikum</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. L. Angermann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. L. Angermann, Dr. H. Behnke, PD Dr. B. Mulansky</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerisches Praktikum</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerisches Praktikum</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

| 3 |

### Voraussetzungen:

- **Lernziele:** Erlernen der Grundlagen im Umgang mit Computeralgebrasystemen bei Anwendung auf technische und wirtschaftliche Problemstellungen

- **Lehrinhalt:** Einführung in die Software-Systeme Matlab, Maple, Mathematica und symbolisches sowie numerisches Lösen von Standard- und Anwendungsaufgaben mit deren Hilfe, Visualisierung der Ergebnisse

- **Studien-/Prüfungsleistungen:** schriftliche Hausübungen und Praktische Arbeit

- **Medienformen:** Beamer-Präsentationen, Rechnervorführungen

### Literatur:

29
**Numerische Mathematik II**

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td>Numerische Mathematik II</td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td>Numerik II</td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td>Numerische Behandlung gewöhnlicher Differentialgleichungen</td>
</tr>
<tr>
<td><strong>Lehrveranstaltungen:</strong></td>
<td>Vorlesung Numerische Mathematik II mit begleitenden Übungen</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. L. Angermann</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. L. Angermann, Dr. H. Behnke, PD Dr. B. Mulansky</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch</td>
</tr>
<tr>
<td><strong>Zuordnung zum Curriculum:</strong></td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td><strong>Semester:</strong></td>
<td>5. Semester</td>
</tr>
<tr>
<td><strong>Moduldauner:</strong></td>
<td>1 Semester</td>
</tr>
<tr>
<td><strong>Angebotsturnus:</strong></td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Mathematik II</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Numerischen Mathematik II</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Mathematik II</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zur Numerischen Mathematik II</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Grundmodule Analysis, Lineare Algebra und diskrete Strukturen, Aufbaumodul Analysis, Modul Numerische Mathematik I

Fortsetzung auf der Rückseite
**Lernziele:** Die Studierenden sollen
- grundlegende Prinzipien der numerischen Behandlung gewöhnlicher Differentialgleichungen kennenlernen.
- Einsicht und Intuition in die numerische Arbeitsweise und Sensibilität für spezielle numerische Problematiken wie Stabilität und Fehlerkontrolle entwickeln.
- in der Lage sein, den Einsatz numerischer Verfahren kompetent durchzuführen. Insbesondere sollen die Algorithmen unter Verwendung aktueller Software-Umgebungen (Matlab, Mathematica) angewendet und getestet werden.
- die zahlreichen Querverbindungen zu anderen mathematischen Gebieten wie Lineare Algebra, Analysis, Geometrie, gewöhnliche Differentialgleichungen usw. er kennen.

**Lehrinhalt:** Ein- und Mehrschrittverfahren für Systeme gewöhnlicher Differentialgleichungen, Methoden für gewöhnliche Randwertaufgaben

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Plato: Numerische Mathematik kompakt, Vieweg
- Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Teubner
- Quarteroni, Sacco, Saleri: Numerische Mathematik 2, Springer
# Fourieranalysis

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Fourieranalysis</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Fourieranalysis mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Rösler, Dr. habil. J. Brasche, N. N. (Professur Differentialgleichungen)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik im Masterstudienengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jedes zweite Jahr</td>
</tr>
</tbody>
</table>

## Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourieranalysis</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Fourieranaly</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

## Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourieranalysis</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zur Fourieranaly</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

## Kreditpunkte: 6

## Voraussetzungen:
Aufbaumodul Analysis, von Vorteil: Modul Funktionentheorie

## Lernziele:

- Die Studierenden sollen
  - die Grundprinzipien der klassischen Fourieranalyse und den Umgang mit Distributionen erlernen,
  - Anwendungen auf die Analyse partieller Differentialgleichungen kennenlernen,
  - einen Einblick in Fragestellungen der Harmonischen Analyse gewinnen.

Fortsetzung auf der Rückseite
**Lehrinhalt:**
- Fourierreihen: Fragen der Konvergenz, Approximative Einsen, $L^2$-Theorie, Anwendungen;
- Fourieranalyse im $\mathbb{R}^n$: Schwartz-Raum, Fourier-Transformation und Faltung, Inversionssatz, Satz von Plancherel, Distributionen und ihre Fouriertransformation, Poissonsche Summationsformel;

**Studien-/Prüfungsleistungen:**
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Skripte</td>
<td></td>
</tr>
</tbody>
</table>

**Literatur:**
- R. Lasser: Introduction to Fourier Series, Marcel Dekker 1996
- Y. Katznelson: An Introduction to Harmonic Analysis, Wiley 1986
Studiengang: Bachelor Angewandte Mathematik

Modulbezeichnung: Partielle Differentialgleichungen mit Ergänzungen

Kürzel: PDG Erg

Untertitel: Vorlesung Partielle Differentialgleichungen mit begleitenden Übungen

Modulverantwortliche(r): Prof. Dr. L. Angermann, N. N. (Professur Differentialgleichungen)

Dozenten: Prof. Dr. L. Angermann, N. N. (Professur Differentialgleichungen), Prof. Dr. M. Demuth, N. N. (Professur Nichtlineare Optimierung)

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtmodul A im Bachelorstudiengang Angewandte Mathematik

Semester: 6. Semester

Moduldauer: 1 Semester

Angebotsturnus: im SS, nach Bedarf

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partielle Differentialgleichungen</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Differentialgleichungen</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partielle Differentialgleichungen</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Übungen zu Differentialgleichungen</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9

Voraussetzungen: Grundmodule Analysis, Lineare Algebra und diskrete Strukturen, Aufbaumodul Analysis

Fortsetzung auf der Rückseite
**Lernziele:** Die Studierenden sollen
- Verständnis für grundlegende Begriffe der Theorie partieller Differentialgleichungen entwickeln.
- wesentliche Beispielklassen linearer und quasilinearer PDG kennenlernen und wichtige Methoden zu ihrer Lösung beherrschen können. erlernen.
- den Zusammenhang zu Anwendungen aus Physik, Technik etc., zur abstrakten Analyse und zum wissenschaftlichen Rechnen erkennen.

**Lehrinhalt:** Wichtige Klassen partieller Differentialgleichungen (PDG 1. Ordnung, quasilineare Systeme 1. Ordnung, lineare PDG höherer Ordnung), Lösungsdarstellungen und analytische Lösungsmethoden, verallgemeinerte Lösungen, Lösungstheorie, Fourier- und Laplace-Transformation

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer-Präsentationen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Meister: Partielle Differentialgleichungen, Akademie-Verlag
- Wloka: Partielle Differentialgleichungen, Teubner
- Evans: Partial Differential Equations, AMS
Funktionalanalysis mit Ergänzungen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Funktionalanalysis mit Ergänzungen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Funktionalanalysis mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. M. Rösler, Dr. habil. J. Brasche</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. M. Rösler, Dr. habil. J. Brasche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul A im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im SS, nach Bedarf</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Übung</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9

Voraussetzungen: Grundmodule Analysis, Lineare Algebra und diskrete Strukturen, Aufbaumodul Analysis


Fortsetzung auf der Rückseite
*Lehrinhalt:* (Auswahl)
- topologische und metrische Räume, Vervollständigung;
- Banachräume, Hilberträume, lineare Operatoren und lineare Funktionale, Dualraum;
- Hahn-Banach-Sätze;
- schwache Topologien, reflexive Räume, Satz von Banach-Alaoglu;
- Sätze von Stone-Weierstraß, Tychonov und Arzela-Ascoli;
- Fredholmtheorie, kompakte Operatoren und ihre Spektraltheorie, Satz von Riesz-Schauder.

*Studien-/Prüfungsleistungen:*
Klausur oder Mündliche Prüfung

*Medienformen:*
Tafel, Skript, Folie

*Literatur:*
- Rudin, W., Functional Analysis, McGraw-Hill
- Werner, D., Funktionalanalyse, Springer
- Yosida, K., Functional Analysis, Springer
- Hirzebruch, F., Scharlau, W., Einführung in die Funktionalanalyse
- Kreyszig, E., Introductory Functional Analysis with Applications, Wiley
# Funktionentheorie mit Ergänzungen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Funktionentheorie mit Ergänzungen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Funktionentheorie mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. L.G. Lucht</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul A im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im SS, nach Bedarf</td>
</tr>
</tbody>
</table>

## Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionentheorie</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Funktionentheorie</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

## Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionentheorie</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Übungen zu Funktionentheorie</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

## Kreditpunkte:

| 9 |

## Voraussetzungen:

Grundmodul Analysis

**Lernziele:** Gegenstand der Vorlesung ist die Theorie der Funktionen einer komplexen Variablen. Die Funktionentheorie ist hinsichtlich der Eleganz ihrer Methoden und der Vollständigkeit ihrer Ergebnisse einzigartig und daher unentbehrlich für Studierende der mathematischen Studiengänge. Die Lehrveranstaltung vermittelt grundlegende Methoden und Ergebnisse der komplexen Analysis und klärt offen gebliebene Fragen aus der reellen Analysis.

*Fortsetzung auf der Rückseite*

<table>
<thead>
<tr>
<th>Studien-/Prüfungsziele:</th>
<th>Hausübungen, Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Skript</td>
</tr>
</tbody>
</table>

Literatur:
### Praktische Arbeit/Studienarbeit

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Praktische Arbeit/Studienarbeit</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Praktische Arbeit/Studienarbeit</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td></td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten und Dozentinnen der Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

#### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>S</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Praktikum</td>
<td>P</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

#### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Praktikum</td>
<td>30</td>
<td>90</td>
<td>120</td>
</tr>
</tbody>
</table>

#### Kreditpunkte: 6

#### Voraussetzungen: Kenntnisse der ersten vier Semester des Bachelor-Studiengangs Angewandte Mathematik


*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Ausgabe einer Fragestellung, etwa aus den Ingenieur- oder Wirtschaftswissenschaften; Erarbeitung von Lösungsansätzen aus der Literatur; Anpassung auf die vorliegende Fragestellung; eventl. Implementierung einer prototypischen Lösung; Anfertigen einer schriftlichen Ausarbeitung; abschliessende Präsentation der Ergebnisse, Diskussion; Nachbearbeitung.

Praktische Arbeiten und Studienarbeiten können sowohl individuell bearbeitet werden als auch im Rahmen einer Projektgruppe.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>schriftliche Ausarbeitung, mündliche Präsentation, eventl. Programmcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer, Rechnervorführungen</td>
</tr>
</tbody>
</table>

**Literatur:** Wird im Rahmen der Veranstaltung angegeben.
Abschlussarbeit

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Abschlussarbeit</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BA-Arbeit</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten und Dozentinnen der Mathematik</td>
</tr>
<tr>
<td>Dozenten:</td>
<td></td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA Arbeit</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA Arbeit</td>
<td>0</td>
<td>360</td>
<td>360</td>
</tr>
</tbody>
</table>

Kreditpunkte: 12

Voraussetzungen: Zulassungsvoraussetzung lt. Ausführungsbestimmungen: Grundmodule 'Analysis' und 'Lineare Algebra und Diskrete Strukturen', Seminar und Praktische Arbeit/Studienarbeit und insgesamt mindestens 120 ECTS aus dem Bachelor Angewandte Mathematik

Lernziele: Die Bachelor-Abschlussarbeit soll zeigen, dass die oder der Studierende in der Lage ist, innerhalb von drei Monaten ein mathematisches Problem mittlerer Schwierigkeit zu analysieren, geeignete Modelle und Methoden zu seiner Lösung zu identifizieren, eventuell anzupassen und einzusetzen und das Ergebnis in angemessener Form schriftlich darzustellen.

Lehrinhalt: Ausgabe einer Fragestellung mit geeigner Literatur; Beratung durch die betreuenden Dozenten und Dozentinnen; Erstellung und fristgemäße Abgabe der schriftlichen Ausarbeitung.

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th><strong>Studien-/Prüfungsleistungen:</strong></th>
<th>schriftliche Ausarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medienformen:</strong></td>
<td>Textsystem mit Formelsatz</td>
</tr>
<tr>
<td><strong>Literatur:</strong></td>
<td>Wird bei der Themenvergabe bekanntgegeben.</td>
</tr>
</tbody>
</table>
Programmierung, Algorithmen und Datenstrukturen (PADS)

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Programmierung, Algorithmen und Datenstrukturen (PADS)</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Informatik I (Algorithmen und Datenstrukturen) und Informatik II (Programmierung, Oberflächen und Datenbanken)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. A. Rausch</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Informatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. und 2. Semester</td>
</tr>
<tr>
<td>Modulsdauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich ab WS</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik I (Algorithmen und Datenstrukturen)</td>
<td>V</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Informatik II (Oberflächen und Datenbanken)</td>
<td>V</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Übungen Informatik I</td>
<td>Ü</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Übungen Informatik II</td>
<td>Ü</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| Arbeitsaufwand: | |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik I (Algorithmen und Datenstrukturen)</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Informatik II (Oberflächen und Datenbanken)</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Übungen Informatik I</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Übungen Informatik II</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 16 |

Fortsetzung auf der Rückseite
**Voraussetzungen:** Keine

**Lernziele:** Die Studierenden haben nach Abschluss des Moduls die grundlegenden Methoden der Informatik gelernt. Sie können diese Methoden auf andere Bereiche/Probleme übertragen und anwenden.

**Lehrinhalt:** Informatik I: Information und Daten, Repräsentationen, einfache Rechnerarchitektur und abstrakte Maschinenmodelle, Spezifikation und Algorithmus, Einführung in Python, Algorithmen: Suchen / Sortieren / Hashing, Datenstrukturen (z.B. Liste, Stack, Queue, Graph, Baum), abstrakte Datentypen
Informatik II: Algorithmentechniken (u.a. Divide-and-Conquer, Greedy, Precomputation, Dynamic Programming), Algorithmen (Graphen, parallele Algorithmen, probabilistische A.), Grundwissen Oberflächen- und Datenbankprogrammierung, objektorientierte Programmierung, funktionales Programmierparadigma, Komplexitätsanalyse, Verifikation

**Studien-/Prüfungsleistungen:**
- Prüfungsvorleistungen: Hausübungen
- Modulprüfung: Abschlussklausur oder mündliche Prüfung

**Medienformen:** Beamer-Präsentation, Tafel

**Literatur:**
- Robert Sedgewick: Algorithms in C (oder ... in C++), Parts 1-4, Addison-Wesley (bzw. Pearson)
- Cormen, Leiserson, Rivest: Introduction to Algorithms, Prentice Hall
Automatentheorie und Formale Sprachen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Automatentheorie und Formale Sprachen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Informatik III</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Jürgen Dix</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Jürgen Dix, Prof. Dr. Barbara Hammer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik III</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übungen</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik III</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übungen</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen: Informatik I-II

Lernziele: Die Studierenden lernen die Grundbegriffe der formalen Sprachen (Grammatiken) und die entsprechenden Automaten kennen. Sie können Parser entwickeln, lernen Grundbegriffe des dynamischen Programmierens (Charts) und können Probleme als entscheidbar/uneentscheidbar nachweisen. Ausserdem können sie die Komplexität von Problemen bestimmen (P/NP).

Lehrinhalt: Grammatiken der Chomsky Hierarchie (Typ 3-Typ 0), Reguläre Ausdrücke, Satz von Kleene, Endliche Automaten (indet.), epsilon Kanten, Pumping Lemma, Kellerautomaten, Turingmaschinen, Busy Beaver, Halteproblem, Reduktionen, aufzählbar/entscheidbar, Random access machines, P/NP

Fortsetzung auf der Rückseite
| Studien-/Prüfungsleistungen: | Prüfungsvorleistungen: Hausübungen  
|                           | Modulprüfung: Abschlussklausur oder mündliche Prüfung |
| Medienformen:              | Beamer-Präsentation, Tafel, Whiteboard |
| **Literatur:**             |  
| – Hopcroft/Ullmann: Introduction to Automata theory  
| – Erk/Priese: Theoretische Informatik |
Einführung in das Programmieren

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in das Programmieren</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Programmierkurs</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. A. Rausch</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Informatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Modulldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmierkurs</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Praktikum</td>
<td>P</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmierkurs</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Praktikum</td>
<td>30</td>
<td>90</td>
<td>120</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen: Keine

Lernziele: Die Studierenden erlernen die grundlegenden Methodiken der Programmierung und können elementare Probleme in Algorithmen umsetzen und diese dann in C++ implementiert. Sie können geeignete zugehörige Daten- und Objektstrukturen entwerfen und kennen einige allgemeine Grundelemente objektorientierter Programmiersprachen.

*Fortsetzung auf der Rückseite*
Lehrinhalt: Einstieg in C (Compilieren eines Programms, Basics, Ausdrücke, Präzedenzregeln, eingebaute Datentypen), Ein- und Ausgabe, das Typsystem (Aggregate, selbstdefinierte Typen), Kontrollstrukturen, Funktionen (Speichermode, Scope und Lifetime, Rekursion, Rekursionsbäume, Overloading), Pointer und Referenzen (Speichermode, dynamischer Speicher, Call-by-Reference, strong/weak Typing, low-level-Sicht von Arrays, Funktionstabellen), Klassen und Vererbung (OO-Design, Komposition und Assoziation, shallow/deep Copy, Funktoren, Operator-Overloading), Polymorphie (dynamic binding, das open/closed-Prinzip), Templates

Die Veranstaltung zeichnet sich durch einen hohen praktischen Anteil aus, d.h., es sollen regelmäßig Programmieraufgaben gelöst und in kleinen Übungsgruppen vorgeführt werden.

| Studien-/Prüfungsleistungen: | Prüfungsvorleistungen: Abgabe der Programmieraufgaben  
Modulprüfung: Abschlussklausur (120min.) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel</td>
</tr>
</tbody>
</table>

Literatur:
- Marcus Bäckmann: Objektorientierte Programmierung für Dummies. mitp-Verlag, 2002
**Grundlagen der Wirtschaftsinformatik**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td><strong>Grundlagen der Wirtschaftsinformatik</strong></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Einführung in die Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. J. P. Müller</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. J. P. Müller</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul aus dem Katalog BAAM-C</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Wirtschaftsinformatik</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übung zu Grundlagen der Wirtschaftsinformatik</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Wirtschaftsinformatik</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung zu Grundlagen der Wirtschaftsinformatik</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

6

### Voraussetzungen:

Informatik I,II, Grundlagen der BWL I

**Lernziele:** Die Studierenden haben nach Abschluss der Lehrveranstaltung die grundlegenden Architekturen und Methoden der Wirtschaftsinformatik gelernt. Sie kennen die wesentlichen Anwendungsbereiche der Wirtschaftsinformatik und beherrschen die Grundlagen der Informationstechnologie, der Datenmodellierung und der objektorientierten Programmierung / Modellierung.

*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Definition, Grundbegriffe und Anwendungsbereiche der Wirtschaftsinformatik, Grundlagen der Informationstechnologie, Datenorganisation, Datenmodellierung und Datenschutz, vom Datenmodell zur Datenbankanwendung, Data Warehousing und multidimensionale Datenmodelle, Prinzipien und Anwendungen der Objektorientierung, Objektorientierte Konzepte, Einführung in die Objektorientierte Modellierung (z.B. mit UML)

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvorleistungen: Hausübungen Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel, Whiteboard</td>
</tr>
</tbody>
</table>

**Literatur:**
- P. Stahlknecht, U. Hasenkamp. Einführung in die Wirtschaftsinformatik,

54
**Rechnerarchitektur und Rechnernetze**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Rechnerarchitektur und Rechnernetze</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Informatik IV</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Harald Richter</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Harald Richter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul aus dem Katalog BAAM-C</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik IV</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übungen</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik IV</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übungen</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Informatik I-III


*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Teil A Rechnerarchitektur 1.0. Erweiterungen der von-Neumann-Maschine, 1.1. Die wichtigsten Komponenten eines modernen Rechners, 1.2. Die Gatter- und Registerbene in der CPU, 1.3. Registerspeicher, 2. CISC-Rechner, 2.0. Das Leitwerk, 2.1. Das Rechenwerk, Befehlsätze, 2.2. Caches, Hauptspeicher, MMU, 2.3. Ein-/Ausgabe (Peripherie), Interrupt, DMA, Teil B Rechnernetze 1.0 Das ISO/OSI-Referenzmodell für Öffentliche Systeme, 2.0 Bitübertragungsschicht (Physical Layer), 3.0 Sicherungsschicht (Data Link Layer), 3.1 Lokale Netze (LANs), Stadtnetze (MANs), Weitverkehrsnetze (WANs), 4.0 Die Vermittlungsschicht (Routing Layer)

<table>
<thead>
<tr>
<th><strong>Studien-/Prüfungsleistungen:</strong></th>
<th>Prüfungsvorleistungen: Hausübungen Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medienformen:</strong></td>
<td>Multimediale Beamer-Präsentation im Rahmen von ELAN</td>
</tr>
</tbody>
</table>

**Literatur:**
- Andrew S. Tanenbaum: Computernetzwerke Pearson Studium
- Douglas E. Comer: Computer Architecture, Pearson Prentice Hall
- Folien und Übungen komplett zum Download
- ELAN Online-Veranstaltung, die über das Internet im Wechsel zwischen Göttingen und Clausthal übertragen wird
**Künstliche Intelligenz**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Künstliche Intelligenz</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Einführung in die KI</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Jürgen Dix</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Jürgen Dix</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik, Vertiefungsrichtung Wirtschaftsmathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die KI</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übungen</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die KI</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übungen</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Informatik I-III

**Lernziele:** Die Studierenden haben nach Abschluss der Lehrveranstaltung die grundlegenden Methoden der Künstlichen Intelligenz gelernt. Sie können diese Methoden auf andere Bereiche/Probleme übertragen und anwenden. Sie können entscheiden, wo welche Methoden geeignet sind und KI-Methoden angleichen bzw. modifizieren, um entsprechende Aufgaben zu lösen.


_Fortsetzung auf der Rückseite_
| Studien-/Prüfungsleistungen: | Prüfungsvorleistungen: Hausübungen  
Modulprüfung: Abschlussklausur oder mündliche Prüfung |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel, Whiteboard</td>
</tr>
</tbody>
</table>
| Literature:                   | – Russell/Norvig: Artificial Intelligence  
– Winston: Artificial Intelligence |
# Graphische Datenverarbeitung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td><strong>Graphische Datenverarbeitung</strong></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Geometrische Modellierung</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Kai Hormann, Prof. Dr. Gabriel Zachmann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Kai Hormann, Prof. Dr. Gabriel Zachmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul aus dem Katalog BAAM-C</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphische Datenverarbeitung</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übungen</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphische Datenverarbeitung</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übungen</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Informatik I,II, Lineare Algebra I,II, Analysis I,II

**Lernziele:** Die Studierenden lernen die Grundkenntnisse der Darstellung, Manipulation und Modellierung von Kurven in der Ebene und im Raum. Sie können Kurven mit bestimmten, von der jeweiligen Anwendung erwünschten Eigenschaften konstruieren und wissen um die Vor- und Nachteile der verschiedenen Darstellungsmöglichkeiten auf theoretischer, praktischer und algorithmischer Ebene.

**Lehrinhalt:** Polynomkurven (Basiswechsel, Polarformen), Bézierkurven (de Casteljau-Algorithmus, Übergangsbedingungen), B-Splines (de Boor-Algorithmus, Unterteilung), rationale Kurven (rationale Bézierkurven und B-Splines), elementare Differentialgeometrie von Kurven, Approximation und Interpolation von Daten

**Studien-/Prüfungsleistungen:** Prüfungsvorleistungen: Hausübungen, Modulprüfung: Abschlussklausur oder mündliche Prüfung

Fürsetzung auf der Rückseite
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Beamer-Präsentation, Tafel, Whiteboard</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Literatur:</strong></td>
<td></td>
</tr>
<tr>
<td>– Hoschek/Lasser (2002): Grundlagen der geometrischen Datenverarbeitung</td>
<td></td>
</tr>
</tbody>
</table>
Ingenieurwesen
Einführung in das Ingenieurwesen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in das Ingenieurwesen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Einführung in den Maschinenbau</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. V. Wesling</td>
</tr>
<tr>
<td>Dozente:</td>
<td>Dozenten der ingenieurwissenschaftlichen Institute</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in den Maschinenbau</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in den Maschinenbau</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 3

Voraussetzungen:

Lernziele: In dieser für die nicht-ingenieurwissenschaftlichen Studiengänge der TUC wichtigen Querschnittsvorlesung wird ein einführender Überblick zu Problemen und Methoden des Maschinenbaus gegeben. Die beteiligten Institute bestreiten dabei jeweils 2 Doppelstunden aus ihrem speziellen Fachgebiet.

Lehrinhalt:

- Fertigungstechnik (Prof. Wesling, ISAF)
  Einteilung der Fertigungsverfahren und Begriffsbestimmung, Fertigungsmeßtechnik, Urformen, Trennen, Stoffeigenschaftsändern, Umformen, Fügen, Beschichten
- Einführung in die Mess- und Regelungstechnik (Prof. Vossiek, IEI)

Fortsetzung auf der Rückseite
Fundamentalvoraussetzungen der Messtechnik, SI-Einheitensystem, Beispiele für Sensoren / Sensorprinzipien, Ursachen und Beschreibung von Messabweichungen Aufgaben einer Regelung (Erklärung der Begriffe Schnelligkeit, Dämpfung, stationäre Genauigkeit, Ausregelung von Störungen, Stabilität), exemplarische Lösung einer Regelungsaufgabe: Modellbildung (mathematische Beschreibung von Systemen), systemtheoretische Analyse (Was darf man von einer Regelung verlangen?), Spezifikation der Anforderungen (Wunschverhalten), Reglerentwurf (Auswahl eines geeigneten Reglers, Festlegung der Reglerparameter), Simulation, Implementierung

– Energiewandlungsmaschinen (Prof. Schwarze, ITR)
  Wirkungsweise einer Kolbenmaschine: Hauptbetriebsdaten, Kräfte, Momente, Einsatzgebiete
  Wirkungsweise einer Strömungsmaschine: Hauptbetriebsdaten, Energieumsetzung
  Einsatzzgebiete

– Bergbaumaschinen und Fördertechnik (Prof. Langefeld, IBB)
  Bedeutung des Bergbaus in Deutschland und in der Welt, Moderne Bergbaumaschinen anhand einiger Beispiele, Einführung in die Fördertechnik und ausgewählte Anwendungen

– Technische Mechanik und Strömungsmechanik (Prof. Brenner, ITM)
  Statik starrer Körper: Es werden die Begriffe Kraft, Flächenlast, Moment, deren Schnittgrößen und Gleichgewichte anhand eines Fachwerks und anhand von Seilkräften erläutert.
  Dynamik: Kinematik von Massenpunkten, Newtonsches Gesetz, Impulserhaltung.

– Fabrikplanung und Fabrikbetrieb (Prof. Bracht, IMAB)
  Standortplanung, Fabrikstrukturplanung, Produktionsstrategien und -systeme, Logistikstrategien und -lösungen

– Konstruktion und Entwicklung/Rechneranwendung im Maschinenbau (Prof. Müller, IMW)
  Grundlagen des Normungs- und Zeichnungswesens, Konstruktionsprozess, Überblick Konstruktionselemente, Rechnergestützte Konstruktion und Entwicklung CAD, Rechnergestützte Planung und Fertigung CAP, CAM, Rechnerintegration CIM

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Präsentationen</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>

64
Technische Mechanik I

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TM I</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Technische Mechanik I mit Gruppenübungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. L. Schmidt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. L. Schmidt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Technisches Vertiefungsfach I im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik I</td>
</tr>
</tbody>
</table>

Kreditpunkte: 7

Voraussetzungen: Grundkenntnisse in Vektor- und Matrizenrechnung, Differential- und Integralrechnung sowie Lösung von linearen Gleichungssystemen

Lernziele: Verständnis für die wesentlichen Grundgesetze und Methoden der Mechanik erlangen; gegenüber den angewandten Ingenieurwissenschaften stark idealisierte Aufgabenstellungen des Gleichgewichts mit zeichnerischen und rechnerischen Methoden lösen können. Das Modul vermittelt überwiegend Fach- und Methodenkompetenz, in geringerem Maß auch System- und Sozialkompetenz.

Fortsetzung auf der Rückseite
Lehrinhalt:
0. Grundlagen
0.1. Kraftbegriff
0.2. Einzelkraft mit gemeinsamem Angriffspunkt
1. Statik starrer Körper und Körpersysteme
1.1. Kräfte mit versch. Angriffspunkten am starren Einzelkörper
1.1.1. Ebenes Kräftesystem 1.1.2. Räumliches Kräftesystem
1.2. Körpersysteme
1.2.1. Die Schnittmethode und ihre Anwendung 1.2.2. Auflager mit übertragenen Reaktionen 1.2.3. Statisch bestimmte und unbestimmte Lagerung 1.2.4. Ebene Fachwerke
1.3. Kontinuierliche Kräfteverteilungen
1.3.1. Volumenkräfte; Massenmittel- und Schwerpunkt 1.3.2. Seile und Ketten
1.4. Grundlagen der (trockenen) Reibung
1.4.1. Haftreibung (Reibung der Ruhe) 1.4.2. Gleitreibung (Reibung der Bewegung) 1.4.3. Anwendung auf die Seilreibung 1.4.4. Reibungsmomente
2. Festigkeitslehre
2.1. Schnittkräfte und Schnittmomente beim Balken (Welle)
2.1.1. Einfache Beanspruchungsarten; Beanspruchungsflächen 2.1.2. Kontinuierliche Belastung (bei Biegung) 2.1.3. Zusammengesetzte Beanspruchungen 2.1.4. Beanspruchungen beim Bogenträger

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skript</td>
</tr>
</tbody>
</table>

Literatur:
- Gross, Hauger, Schnell: Technische Mechanik, Bände 1 und 2, Springer-Verlag
- Rittinghaus, Motz: Mechanik-Aufgaben, Band 1, VDI-Verlag
- Zimmermann: Übungsaufgaben Technische Mechanik, Fachbuchverlag Leipzig-Köln
Technische Mechanik II

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Mechanik II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TM II</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Technische Mechanik II mit Gruppenübungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. L. Schmidt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. L. Schmidt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Technisches Vertiefungsfach II im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Mechanik II</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik II</td>
<td>Ü</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Mechanik II</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik II</td>
<td>30</td>
<td>75</td>
<td>105</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 8 |
| Voraussetzungen: | Modul Technische Mechanik I |

**Lernziele:** Spannungs- und Verzerrungszustände berechnen und bewerten können; einfachste Bauteile - auch bei komplexer Beanspruchung - dimensionieren können. Elementare Fragestellungen der Bewegung punktförmig gedachter Massen bearbeiten können. Das Modul vermittelt überwiegend Fach- und Methodenkompetenz, in geringerem Maß auch System- und Sozialkompetenz.

*Fortsetzung auf der Rückseite*
Lehrinhalt:

2.2. Spannungsanalyse
2.2.1. Differentielle Gleichgewichtsbedingungen; Symmetrie der Spannungsmatrix
2.2.2. Cauchysche Spannungsgleichung; Hauptspannungen und Mohrsche Spannungskreise
2.2.3. Anstrengung (Vergleichsspannung) bei Festigkeitshypothesen
2.3. Verzerrungsanalyse
2.4. Zusammenhang zw. Spannungs- und Verzerrungszustand
2.4.1. Elastischer Bereich: Hookesches Gesetz
2.4.2. Überelastischer Bereich
2.4.3. Zulässige Spannung
2.5. Rotationssymmetrischer Spannungszustand
2.5.1. Aufstellen der Grundgleichungen
2.5.2. Grundlagen der Membrantheorie von Rotationsschalen
2.5.3. Anwendungsbeispiele
2.5.4. Elementare Herleitung der Kesselformel
2.6. Stabverformung
2.6.1. Biegung
2.6.2. Torsion einer Welle mit Kreis(ring)querschnitt
2.6.3. Stabknickung unter Drucklasten

3. Dynamik
3.2. Kinematik der Punktmasse
3.2.1. Lage der Punktmasse
3.2.2. Geschwindigkeit der Punktmasse
3.2.3. Beschleunigung
3.2.4. Winkelgeschwindigkeits- und Winkelbeschleunigungsvektor
3.3. Kinetik der Punktmasse
3.3.1. Das dynamische Grundgesetz
3.3.2. Impuls- und Impulsmomentensatz
3.3.3. Arbeitssatz, Leistungssatz; Energiesatz der Mechanik
3.4. Kinematik des starren Körpers
3.4.1. Translation
3.4.2. Drehung
3.5. Impulssatz, Schwerpunktsatz
3.6. Impulsmomentensatz, Drehung um eine feste Achse

Studien-/Prüfungsleistungen:

Klausur oder Mündliche Prüfung

Medienformen:

Tafel, Folien, Skript

Literatur:

- Gross, Hauger, Schnell: Technische Mechanik, Bände 1 und 2, Springer-Verlag
- Rittinghaus, Motz: Mechanik-Aufgaben, Band 1, VDI-Verlag
- Zimmermann: Übungsaufgaben Technische Mechanik, Fachbuchverlag Leipzig-Köln
Technische Mechanik III

**Studiengang:** Bachelor Angewandte Mathematik

**Modulbezeichnung:** Technische Mechanik III

**Kürzel:** TM III

**Untertitel:**

**Lehrveranstaltungen:** Vorlesung Technische Mechanik III mit Hörsaalübungen

**Modulverantwortliche(r):** Prof. Dr.-Ing. Sabine Langer

**Dozenten:** Prof. Dr.-Ing. Sabine Langer

**Sprache:** Deutsch

**Zuordnung zum Curriculum:** Wahlpflichtmodul C im Bachelorstudiengang Angewandte Mathematik

**Semester:** 6. Semester

**Moduldauer:** 1 Semester

**Angebotsturnus:** jährlich im SS

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Mechanik III</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik III</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Mechanik III</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik III</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 5

**Voraussetzungen:** Module Technische Mechanik I und II

**Lernziele:** Beschreibung der Bewegung von punktförmig gedachten Massen, Systemen von solchen Massenpunkten und starren Körpern unter der Wirkung von Kräften. Das Modul vermittelt überwiegend Fach- und Methodenkompetenz, in geringerem Maß auch System- und Sozialkompetenz.

Fortsetzung auf der Rückseite
**Lehrinhalt:**
1. Wiederholung: Kinematik des Massenpunktes
2. Kinematik des starren Körpers: Translation, Rotation, Allgemeine Bewegung
5. Kinetik eines starren Körpers: Rotation um eine feste Achse, Ebene Bewegung, Räumliche Bewegung
7. Kinematik des starren Körpers im Relativsystem: Transformationsmatrizen für raum- und körperfeste Koordinaten, Kinematik des räumlichen, starren Körpers im Relativsystem
8. Kinetik des starren Körpers im Relativsystem: Schwerpunktsatz, Impulsmomentsatz

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Gross, Hauger, Schnell: Technische Mechanik, Band 3, Springer-Verlag
- Hibbeler: Technische Mechanik 3, Pearson
- Wriggers, Nackenhorst, Beuermann, Spiess, Löhnt: Technische Mechanik kompakt, Teubner
Regelungstechnik I

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungstechnik I</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Regelungstechnik I</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>


Fortsetzung auf der Rückseite
Lehrinhalt:
3. Linearisierung um einen stationären Zustand: Bestimmung des stationären Zustands eines dynamischen Systems, Linearisierung um den stationären Zustand
4. Stabilität dynamischer Systeme: Definition der Stabilität, notwendige Stabilitätsbedingungen, Grundlegendes Stabilitätskriterium, Algebraische Stabilitätskriterien: Das Hurwitz-Kriterium, Das Routh-Kriterium
5. Frequenzgang linearer zeitinvarianter Systeme: Die Ortskurve, Das Bodediagramm
6. Lineare zeitinvariannte Regelungen: Übertragungsgleichung des geschlossenen Regelkreises, Stabilität des geschlossenen Regelkreises, Klassische Reglerstrukturen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsteilungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Folien, Übungsaufgaben incl. Lösungen als Textdokumente, alles über WEB abrufbar, Tafel</td>
</tr>
</tbody>
</table>

Literatur:
- O. Föllinger, Regelungstechnik, Hüthig-Verlag
- G. Schmidt, Grundlagen der Regelungstechnik, Springer-Verlag
- H. Unbehauen, Regelungstechnik I, Vieweg-Verlag
Regelungstechnik II

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Regelungstechnik II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>RT II</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Vorlesung Regelungstechnik II mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Nachfolger von Prof. Königorski (vorübergehend Dr. Jens Pfeiffer)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum: gemeinsam mit Messtechnik I Teil des Wahlpflichtmoduls Technisches Vertiefungsfach II im Bachelorstudiengang Angewandte Mathematik

| Semester:  | 5. Semester |
| Modulduauer:  | 1 Semester |
| Angebotsturnus:  | jährlich im WS |

<table>
<thead>
<tr>
<th>Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Regelungstechnik II</td>
</tr>
<tr>
<td>Übungen zu Regelungstechnik II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Regelungstechnik II</td>
</tr>
<tr>
<td>Übungen zu Regelungstechnik II</td>
</tr>
</tbody>
</table>

Kreditpunkte: 5

Voraussetzungen: Modul Regelungstechnik I

Lernziele: Den Studierenden werden Kenntnisse über die Zustandsdarstellung von LZI-Systemen, sowie über die auf der Zustandsdarstellung basierenden Analysen der LZI-Systeme bezüglich Stabilität, Steuer- und Beobachtbarkeit vermittelt. Die Anforderungen an Regelungen werden beschrieben, darauf aufbauend werden zahlreiche Verfahren zur Reglersynthese im Frequenzbereich (WOK, Frequenzkennlinienverfahren, Betragsoptimum), im Zeitbereich (Optimale Regelung, Polvorgabe) und strukturelle Maßnahmen (Kaskade, Störgrößenberücksichtigung) zur Verbesserung des Regelverhaltens vorgestellt. Die Studierenden sollten durch diese Vorlesung in der Lage sein, LZI-Systeme selbstständig zu analysieren, die Anforderungen an eine Regelung zu definieren, ein Reglerentwurfsverfahren auszuwählen und einen dementsprechenden Regler zu entwerfen.

Fortsetzung auf der Rückseite
**Lehrinhalt:**
Beschreibung und Analyse linearer kontinuierlicher Systeme: Die Wurzelortskurve, Beschreibung dynamischer Systeme im Zustandsraum, Stabilitätsanalyse im Zustandsraum, Steuerbarkeit und Beobachtbarkeit
Allgemeine Anforderungen an eine Regelung: Kenndaten für das dynamische Verhalten des Regelkreises, stationäre Genauigkeit
Synthese linearer, kontinuierlicher Systeme im Frequenzbereich: Synthese mittels der Wurzelortskurve, Synthese mittels der Frequenzkennlinien, Das Betrags optimum
Strukturelle Maßnahmen zur Verbesserung des Regelverhaltens: Kaskadenregelung, Störgrößenaufschaltung
Synthese linearer kontinuierlicher Systeme im Zeitbereich: Gütemaße im Zeitbereich, Parameteroptimierung nach der quadratischen Regelfläche, Entwurf optimaler Zustandsregler (Riccatiregler), Synthese von Zustandsreglern durch Polvorgabe

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Folien, Skript, Übungsblätter, Tafeln</td>
</tr>
</tbody>
</table>

**Literatur:**
- O. Föllinger, Regelungstechnik, Hüthig-Verlag
- H. Unbehauen, Regelungstechnik I und II, Vieweg-Verlag
Messtechnik I

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Messtechnik I</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MT I</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Messtechnik I mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum: gemeinsam mit Regelungstechnik II Teil des Wahlpflichtmoduls Technisches Vertiefungsfach II im Bachelorstudiengang Angewandte Mathematik</td>
<td></td>
</tr>
<tr>
<td>Semester:</td>
<td>5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messtechnik I</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Messtechnik I</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messtechnik I</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Messtechnik I</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 5

**Voraussetzungen:**


*Fortsetzung auf der Rückseite*
**Lehrinhalt:**
1. Grundlagen: Allgemeine Grundlagen der Messtechnik, Grundlagen der Sensorik, Grundlagen der Elektrotechnik, Analogale Messung elektrischer Größen
2. Eigenschaften und Charakterisierung von Sensoren und Messvorgängen: (Quasi-)Statische Eigenschaften, Messabweichung, Dynamische Eigenschaften, Sonstige Eigenschaften
5. Sensoren und Messwertumformer: Temperaturmessung, Kraft- und Druckmessung, Durchflussmessung, Positions-, Weg- und Geschwindigkeitsmessung
7. Schnittstellen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Folien, Übungsaufgaben incl. Lösungen als Textdokumente, alles übers WEB abrufbar, Tafel</td>
</tr>
</tbody>
</table>

**Literatur:**
- E. Schröfer, Elektrische Messtechnik, Hanser, 2004
- J. Hoffmann, Handbuch der Messtechnik, Hanser 2004
- J. P. Bentley, Principles of Measurement Systems, Pearson, 2005
### Signalübertragung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Signalübertragung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SUe</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Signalübertragung mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul C im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

#### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalübertragung</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Signalübertragung</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

#### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalübertragung</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Signalübertragung</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

#### Kreditpunkte:

- 5

#### Voraussetzungen:


Die Vorlesung erarbeitet elementare Grundlagen für Vorlesungen in den Themengebieten Regelungstechnik, Messtechnik und Nachrichtentechnik / Informationstechnik.

*Fortsetzung auf der Rückseite*
**Lehrinhalt:**
1. Einführung in die Signalübertragung
2. Darstellung von Signalen im Zeitbereich
3. Darstellung von Signalen im Frequenzbereich
4. Abtasttheoreme
5. Lineare zeitinvariante Systeme (LTI Systeme)
6. Grundlagen der Modulation

**Studien-/Prüfungsleistungen:** Klausur oder Mündliche Prüfung

**Medienformen:** Folien, Übungsaufgaben incl. Lösungen als Textdokumente, alles übers WEB abrufbar, Tafel

**Literatur:**
- B. Girod , R. Rabenstein , A. Stenger, Einführung in die Systemtheorie, Teubner 2005
Betriebswirtschaftslehre
**Einführung in die Betriebswirtschaftslehre**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Einführung in die Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. Semester</td>
</tr>
<tr>
<td>Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Betriebswirtschaftslehre</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Betriebswirtschaftslehre</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 3

**Voraussetzungen:**

**Lernziele:** Vermittlung wirtschaftswissenschaftlicher Grundbegriffe und Grundkonzepte, Basis für das Verständnis wirtschaftswissenschaftlicher Zusammenhänge in weiterführenden Modulen, Erwerb von Grundkenntnissen über betriebswirtschaftliche Zusammenhänge

**Lehrinhalt:** Gegenstand und Methoden der BWL, Zielbildung und Entscheidungsprozesse, Rechtsformen, Beschaffung, Produktion, Absatz, Organisation und Personal, Investition und Finanzierung, Rechnungswesen

**Studien-/Prüfungsleistungen:** Klausur oder Mündliche Prüfung

**Medienformen:**

*Fortsetzung auf der Rückseite*
Literatur:
Grundlagen der Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BWL</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Produktion und Vorlesung Marketing (jeweils mit begleitenden Übungen)</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Schwindt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Schwindt, PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Bachelorstudiengang Angewandte Mathematik ( Pflichtmodul in der Vertiefungsrichtung Wirtschaftsmathematik)</td>
</tr>
<tr>
<td>Semester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktion</td>
<td>V(+Ü)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Marketing</td>
<td>V(+Ü)</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktion</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Marketing</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |
| Voraussetzungen: | Einführung in die Betriebswirtschaftslehre |

Lernziele: Vertiefung der betriebswirtschaftlichen Grundlagen in ausgewählten Bereichen
Produktion: Überblick über Fragestellungen der Produktionswirtschaft und deren Einbindung in den Bezugsrahmen der Betriebswirtschaftslehre, Kenntnis von Grundlagen der Planung der betrieblichen Leistungserstellung und von Anwendungssystemen zur integrierten Produktionsplanung
Marketing: Grundlegendes Denken in Kunden- und Marktkategorien erwerben, Kenntnis über die wichtigsten strategischen Vorgehensweisen auf Märkten erhalten, Überblick über das Marketinginstrumentarium erlangen

Fortsetzung auf der Rückseite
**Lehrinhalt:** Produktion: Gegenstand der Produktionswirtschaft, Produktionssysteme und deren Planung, Produktions- und kostentheoretische Grundlagen, strategische und infrastrukturelle Rahmenbedingungen der Produktion, Produktionsprogrammplanung, Materialbedarfsplanung, Kapazitätsabgleich und Ablaufplanung, integrierte Produktionsplanung

Marketing: Grundlagen des Marketings, Marktforschung, Konsumentenverhalten, Marketingzielentscheidungen, Strategische Marketingentscheidungen, Operative Marketingentscheidungen (Marketing-Mix-Entscheidungen), Implementierungsentscheidungen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>jeweils Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
</table>

**Medienformen:**

**Literatur:**
### Unternehmensführung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Unternehmensführung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Unternehmensführung</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Wolfgang Pfau</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Wolfgang Pfau</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Bachelorstudiengang Angewandte Mathematik (Pflichtmodul in der Vertiefungsrichtung Wirtschaftsmathematik)</td>
</tr>
<tr>
<td>Semester:</td>
<td>5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

#### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unternehmensführung</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unternehmensführung</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 3 |
| Voraussetzungen: | |

**Lernziele:** Erwerb von Grundkenntnissen zur erfolgsorientierten Führung von Unternehmen

**Lehrinhalt:** Grundlagen der Unternehmensführung: aufgabenbezogene Führung, personenbezogene Führung, strukturbezogene Führung

**Studien-/Prüfungsteilnahmen:** Klausur oder Mündliche Prüfung

**Medienformen:**

_Fortsetzung auf der Rückseite_
Literatur:

Investition und Finanzierung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Investition und Finanzierung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Investition und Finanzierung mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Heike Schenk-Mathes</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Heike Schenk-Mathes</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Bachelorstudiengang Angewandte Mathematik (Pflichtmodul in der Vertiefungsrichtung Wirtschaftsmathematik)</td>
</tr>
<tr>
<td>Semester:</td>
<td>5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investition und Finanzierung</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Übungen zu Investition und Finanzierung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investition und Finanzierung</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Investition und Finanzierung</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 5 |

| Voraussetzungen: | |

Lernziele: Vertiefung der betriebswirtschaftlichen Grundlagen in ausgewählten Bereichen, Erwerb von Grundkenntnissen über die Investitions- und Finanzierungstheorien

Lehrinhalt: Investitions- und Finanzierungsentscheidungen bei Quasi-Sicherheit: Verfahren der Investitionsrechnung, Optimale Nutzungsdauer und Ersatzinvestition, Programmentscheidungen; Finanzmanagement: Rahmenbedingungen, Finanzierungsarten; Investitions- und Finanzierungsentscheidungen bei Unsicherheit: Entscheidungstheoretische Grundlagen, Risikoanalysen, Portefeuilletheorie, Kapitalmarktmärkte; Investitions- und Finanzierungsprobleme bei Informationsasymmetrie

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>

**Literatur:**
Unternehmensrechnung 1

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Unternehmensrechnung 1</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Unternehmensrechnung 1a und Vorlesung Unternehmensrechnung 1b</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Inge Wulf</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. Inge Wulf</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Bachelorstudiengang Angewandte Mathematik (Pflichtmodul in der Vertiefungsrichtung Wirtschaftsmathematik)</td>
</tr>
<tr>
<td>Semester:</td>
<td>5. und 6. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich beginnend im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unternehmensrechnung 1a</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Unternehmensrechnung 1b</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unternehmensrechnung 1a</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Unternehmensrechnung 1b</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |
| Voraussetzungen: | |

*Lernziele:* Vermittlung eines Grundverständnisses für die elementaren Informationsinstrumente des externen Rechnungswesens - die Bilanz, die Gewinn- und Verlustrechnung und den Anhang - im nationalen und internationalen Kontext.

*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Unternehmensrechnung 1a: Grundlagen der Finanzbuchführung und des handelsrechtlichen Jahresabschlusses (Grundsätze ordnungsmäßiger Buchführung, Ansatz-, Bewertungs- und Ausweisvorschriften), Bilanzpolitik und Bilanzanalyse, die International Financial Reporting Standards (IFRS) und ihre Bedeutung für die deutsche Rechnungslegung

Unternehmensrechnung 1b: Einordnung der Kosten- und Leistungsrechnung in das betriebliche Rechnungswesen, Rechnungsziele, Kosten- und Leistungsgriffe, Kostenartenrechnung, Kostenstellenrechnung, Kostenträgerrechnung, Systeme der Kosten- und Leistungsrechnung und der kurzfristigen Erfolgsrechnung

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>jeweils Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>

**Literatur:**
Teil II

Masterstudiengang
Angewandte Mathematik

Masterstudiengang
Operations Research
Mathematik
### Funktionalanalysis

| Studiengang: | Master Angewandte Mathematik  
Bachelor Angewandte Mathematik |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td><strong>Funktionalanalysis</strong></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Funktionalanalysis mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. M. Rösler, Dr. habil. J. Brasche</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. M. Rösler, Dr. habil. J. Brasche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

**Zuordnung zum Curriculum:** Wahlpflicht Analysis/Reine Mathematik im Masterstudiengang Angewandte Mathematik, nutzbar als Wahlpflichtmodul B im Bachelorstudiengang Angewandte Mathematik

**Semester:** 1. bzw. 5. Semester

**Moduldauer:** 1 Semester

**Angebotsturnus:** im WS, nach Bedarf

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionalanalysis</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Funktionalanalysis</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionalanalysis</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Funktionalanalysis</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Grundmodule Analysis, Lineare Algebra und diskrete Strukturen, Aufbaumodul Analysis

**Lernziele:** Die Funktionalanalysis liefert Methoden zum Studium analytischer Probleme aus zahlreichen Gebieten der Mathematik (z. B. Numerik, partielle Differentialgleichungen, harmonische Analyse, Stochastik) und zunehmend auch in Anwendungsbereichen. Die Vorlesung ist grundlegend für viele der weiterführenden Veranstaltungen im Bereich Analysis. Die Studierenden sollen das Verständnis für abstrakte Methoden und für die Erweiterung der Analysis im $\mathbb{R}^n$ entwickeln.
**Lehrinhalt: (Auswahl)**
- topologische und metrische Räume, Vervollständigung;
- Banachräume, Hilberträume, lineare Operatoren und lineare Funktionale, Dualraum;
- Hahn-Banach-Sätze;
- schwache Topologien, reflexive Räume, Satz von Banach-Alaoglu;

**Studien-/Prüfungsleistungen:**
Klausur oder Mündliche Prüfung

**Medienformen:**
Tafel, Skript, Folie

**Literatur:**
- Rudin, W., Functional Analysis, McGraw-Hill
- Werner, D., Funktionalanalysis, Springer
- Yosida, K., Functional Analysis, Springer
- Hirzebruch, F., Scharlau, W., Einführung in die Funktionalanalysis
- Kreyszig, E., Introductory Functional Analysis with Applications, Wiley
Einführung in die Zahlentheorie

| Studiengang: | Master Angewandte Mathematik  
| Bachelor Angewandte Mathematik |
| Modulbezeichnung: | Einführung in die Zahlentheorie |
| Kürzel: | Zahlentheorie |
| Untertitel: |
| Lehrveranstaltungen: | Vorlesung Zahlentheorie mit begleitenden Übungen |
| Modulverantwortliche(r): | Prof. Dr. L.G. Lucht |
| Dozenten: | Prof. Dr. L.G. Lucht, Prof. Dr. J. Sander |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum: | Wahlpflicht Analysis/Reine Mathematik im Masterstudiengang Angewandte Mathematik, nutzbar als Wahlpflichtmodul B im Bachelorstudiengang Angewandte Mathematik |
| Semester: | 1. bzw. 5. Semester |
| Moduldauer: | 1 Semester |
| Angebotsturnus: | im WS, nach Bedarf |

<p>| Lehrformen: |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Zahlentheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Zahlentheorie</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

<p>| Arbeitsaufwand: |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Zahlentheorie</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Zahlentheorie</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Grundmodule Analysis, Lineare Algebra und diskrete Strukturen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fortsetzung auf der Rückseite

Die Lehrveranstaltung vermittelt unentbehrliches Grundwissen über Strukturen, Methoden, Ergebnisse, Beweise und Algorithmen der Zahlentheorie zusammen mit historischen Anmerkungen.

**Lehrinhalt:** Teilbarkeit, Euklidischer Algorithmus, Primzahlen, Restklassenringe, Kongruenzen, RSA, quadratisches Reziprozitätsgesetz, Summen von Quadraten, arithmetische Funktionen, Dirichletsche Faltung, Primzahlverteilung, Partitionen.

**Studien-/Prüfungsleistungen:** Klausur oder Mündliche Prüfung

**Medienformen:** Tafel, Skript

**Literatur:**
### Algebra

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor Angewandte Mathematik</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Algebra</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Algebra mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. W. Klotz, Prof. Dr. J. Sander</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. W. Klotz, Prof. Dr. J. Sander</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht Analysis/Reine Mathematik im Masterstudien-</td>
</tr>
<tr>
<td></td>
<td>gang Angewandte Mathematik, nutzbar als Wahlpflichtmodul B im Bachelorstudiengang</td>
</tr>
<tr>
<td></td>
<td>Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. bzw. 5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im WS, nach Bedarf</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Algebra</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Algebra</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen: Grundmodul Lineare Algebra und Diskrete Strukturen


Fortsetzung auf der Rückseite
### Lehrinhalt:
- Gruppentheorie: Homomorphismen, Sylow-Sätze, auflösbare und einfache Gruppen, Permutationsgruppen;
- Ringtheorie: Ideale, faktorielle und euklidische Ringe, Polynomringe;
- Körpertheorie: Körpererweiterungen, endliche Körper;

### Studien-/Prüfungsleistungen:
<table>
<thead>
<tr>
<th></th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
</table>

### Medienformen:
Tafel, Folien, Skript

### Literatur:
- N. Bourbaki, Algebra I, II
- S. Lang, Algebra
- F. Lorenz, Einführung in die Algebra
- B.L. van der Waerden, Algebra I, II
- B.L. van der Waerden, A history of algebra - from al-Khwarizmi to Emmy Noether
**Funktionentheorie**

| Studiengang:          | Master Angewandte Mathematik  
<table>
<thead>
<tr>
<th></th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Funktionentheorie</td>
</tr>
<tr>
<td>Kurzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Analytische Funktionen einer komplexen Variablen</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Funktionentheorie mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. L.G. Lucht, Prof. Dr. M. Demuth</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht Analysis/Reine Mathematik im Masterstudiengang Angewandte Mathematik, nutzbar als Wahlpflichtmodul B im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. bzw. 5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im WS, nach Bedarf</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Funktionentheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Funktionentheorie</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Funktionentheorie</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Funktionentheorie</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

| Kreditpunkte:                     | 6          |
| Voraussetzungen:                  | Grundmodul Analysis |

**Lernziele:** Gegenstand der Vorlesung ist die Theorie der Funktionen einer komplexen Variablen. Die Funktionentheorie ist hinsichtlich der Eleganz ihrer Methoden und der Vollständigkeit ihrer Ergebnisse einzigartig und daher unentbehrlich für Studierende der mathematischen Studiengänge. Die Lehrveranstaltung vermittelt grundlegende Methoden und Ergebnisse der komplexen Analysis und klärt offen gebliebene Fragen aus der reellen Analysis.

_Fortsetzung auf der Rückseite_
**Lehrinhalt:**
- Funktionen im Komplexen, Holomorphiebegriff, Cauchy-Riemannsche Differentialgleichungen;
- Kurvenintegrale, Cauchyscher Integralsatz;
- Abbildungseigenschaften holomorpher Funktionen;
- Laurentreihen, meromorphe Funktionen, isolierte Singularitäten;
- Residuensatz und dessen Konsequenzen.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skripte</td>
</tr>
</tbody>
</table>

**Literatur:**
- Fischer, W., Lieb I.: Funktionentheorie: Komplexe Analysis in einer Veränderlichen, Vieweg
- Ahlfors, L. V.: Complex Analysis, McGraw-Hill
- Priestley, H. A.: Introduction to Complex Analysis, Oxford Univ. Press
- Freitag, E., Busam, R.: Funktionentheorie 1, Springer
## Partielle Differentialgleichungen

| Studiengang: | Master Angewandte Mathematik  
Bachelor Angewandte Mathematik |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Partielle Differentialgleichungen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PDG</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Partielle Differentialgleichungen mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. L. Angermann, N. N. (Professur Differentialgleichungen)</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. L. Angermann, N. N. (Professur Differentialgleichungen), Prof. Dr. M. Demuth, N. N. (Professur Nichtlineare Optimierung)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht Analysis/Reine Mathematik oder Numerische Mathematik im Masterstudiengang Angewandte Mathematik, nutzbar als Wahlpflichtmodul B oder C im Bachelorstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. bzw. 5. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im WS, nach Bedarf</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partielle Differentialgleichungen</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Differentialgleichungen</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partielle Differentialgleichungen</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zu Differentialgleichungen</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

6

### Voraussetzungen:

Grundmodule Analysis, Lineare Algebra und diskrete Strukturen, Aufbaumodul Analysis

Fortsetzung auf der Rückseite
**Lernziele:** Die Studierenden sollen
- Verständnis für grundlegende Begriffe der Theorie partieller Differentialgleichungen entwickeln.
- wichtige analytische Lösungsstrategien für partielle Differentialgleichungen erlernen.
- den Zusammenhang zu Anwendungen aus Physik, Technik etc., zur abstrakten Analysis und zum wissenschaftlichen Rechnen erkennen.

**Lehrinhalt:** Beispiele und elementare Lösungsmethoden für Differentialgleichungen, Theorie der Anfangswertaufgaben (insbes. Stabilität), Theorie der Randwertaufgaben, wichtige partielle Differentialgleichungen, Lösungsdarstellungen und analytische Lösungsmethoden, verallgemeinerte Lösungen, Lösungstheorie, Fourier- und Laplace-Transformation

<table>
<thead>
<tr>
<th>Studien-/Prüfungßleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer-Präsentationen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Meister: Partielle Differentialgleichungen, Akademie-Verlag
- Wloka: Partielle Differentialgleichungen, Teubner
- Evans: Partial Differential Equations, AMS
**Operatortheorie**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Operatortheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Operatortheorie</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. M. Rösler, Dr. habil. J. Brasche</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. M. Rösler, Dr. habil. J. Brasche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflicht Analysis/Reine Mathematik im Masterstudien- gang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>nach Bedarf</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operatortheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Operatortheorie</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operatortheorie</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Operatortheorie</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

**Kreditpunkte:**  6

**Voraussetzungen:** Modul Funktionalanalysis

**Lernziele:** Die Studierenden sollen vertiefte Kenntnisse in ausgewählten weiterführenden Bereichen der Funktionalanalysis gewinnen.

*Fortsetzung auf der Rückseite*
### Lehrinhalt: (mögliche Themen)
- Beschränkte und unbeschränkte lineare Operatoren;
- Kompakte Operatoren, Fredholm-Theorie, Satz von Riesz-Schauder, Hilbert-Schmidt-Operatoren;
- Fouriertransformation;
- Spektraltheorie selbstadjungierter Operatoren;
- Operatorhalbgruppen;
- Banach- und C*-Algebren;
- Spektraltheorie kommutativer Banach- und C*-Algebren (Gelfand-Theorie), Satz von Gelfand-Naimark.

### Studien-/Prüfungsleistungen:
Klausur oder Mündliche Prüfung

### Medienformen:
Tafel, Folien, Skripte

### Literatur:
- Weidmann, J.: Lineare Operatoren in Hilberträumen, Teil 1, Teubner
- Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Teile 1 und 2, Academic Press
- Conway, J.B.: A Course in Functional Analysis, Springer
- Nelson, E.: Topics in Dynamics I, Princeton Univ. Press
C*-Algebren

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>C*-Algebren</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Banach und C*-Algebren</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. habil. J. Brasche, Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. habil. J. Brasche, Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik im Masterstudienang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>nach Bedarf</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C*-Algebren</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>C*-Algebren</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |

**Voraussetzungen:** Bachelor Angewandte Mathematik, Modul Funktionalanalysis

**Lernziele:** Die Studierenden sollen
- Einblick in die grundlegenden Konzepte der Theorie der Banach- und C*-Algebren gewinnen, die Spektraltheorie solcher Algebren studieren;
- einige Anwendungen kennenlernen (Spektraltheorie normaler Operatoren, Töplitz-Operatoren).

**Lehrinhalt:** Banach Algebren; Spektrum und Spektralradius; Spektraltheorie kommutativer Banach-Algebren; Gelfand-Theorie; Darstellung von C*-Algebren; Satz von Gelfand-Naimark; Funktionalkalkül; positive Funktionale; GNS-Konstruktion; Anwendung auf die Spektraltheorie normaler Operatoren; Töplitz-Operatoren und Töplitz-Algebren.

**Studien-/Prüfungsleistungen:** Klausur oder Mündliche Prüfung

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th><strong>Medienformen:</strong></th>
<th>Tafel, Folien/Beamer, Skript</th>
</tr>
</thead>
</table>

**Literatur:**
### Studiengang:
Master Angewandte Mathematik

### Modulbezeichnung:
Dirichletformen und Markovprozesse

### Kürzel:

### Untertitel:

### Lehrveranstaltungen:
Vorlesung Dirichletformen und Markovprozesse

### Modulverantwortliche(r):
Dr. habil. J. Brasche

### Dozenten:
Dr. habil. J. Brasche

### Sprache:
Deutsch

### Zuordnung zum Curriculum:
Wahlpflichtmodul Analysis/Reine Mathematik im Master-studiengang Angewandte Mathematik

### Semester:
ad 2. Semester

### Modulduauer:
1 Semester

### Angebotsturnus:
nach Bedarf

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirichletformen und Markovprozesse</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirichletformen und Markovprozesse</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

### Kreditpunkte:
6

### Voraussetzungen:
Bachelor Angewandte Mathematik, Modul Operatortheorie

### Lernziele:
Die Studierenden sollen
- die Grundzüge der Potentialtheorie von Dirichletformen lernen,
- Anwendungen auf Randwertprobleme analysieren,
- das Wechselspiel Potentialtheorie-Stochastik studieren.

### Lehrinhalt:
- Definition von Dirichletformen, Beispiele; Kontraktionseigenschaften von Dirichletformen; Gleichgewichtspotential; Maße endlicher Energie; das Ausfegen; Spektrale Synthese in Dirichleträumen; Dirichletformen und zugehörige Markovprozesse; Blumenthal’s 0-1-Gesetz, reguläre Randpunkte; das Dirichletproblem.

### Studien-/Prüfungsleistungen:
Klausur oder Mündliche Prüfung

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Tafel, Folien/Beamer, Skripte</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Literatur:</strong></td>
<td></td>
</tr>
</tbody>
</table>
**Operatorhalbgruppen**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Operatorhalbgruppen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Operatorhalbgruppen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth</td>
</tr>
<tr>
<td>Dozenter:</td>
<td>Prof. Dr. M. Demuth, Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>nach Bedarf</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operatorhalbgruppen</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operatorhalbgruppen</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Module Funktionalanalyse und Operatortheorie

**Lernziele:** Die Studierenden sollen
- die Grundzüge der Theorie stark stetiger Halbgruppen kennenlernen,
- die Anwendung der Halbgruppen für Evolutionsgleichungen lernen,
- die Konsequenzen für andere Bereiche der Operatortheorie erkunden.

**Lehrinhalt:** (mögliche Themen)
- Starkstetige Halbgruppen, Erzeuger, Resolventen;
- Positivität und Kontraktivität;
- Analytische Halbgruppen;
- Störungstheorie und Approximation;
- Asymptotik von Halbgruppen;
- Zusammenhang zu elliptischen Operatoren.

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skripte</td>
</tr>
</tbody>
</table>

**Literatur:**
# Lie-Gruppen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Lie-Gruppen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Lie-Gruppen mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik im Master-Studiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>nach Bedarf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Lehrform</td>
</tr>
<tr>
<td>Lie-Gruppen</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>Lie-Gruppen</td>
<td>60</td>
</tr>
</tbody>
</table>

| Kreditpunkte:        | 6                                              |
| Voraussetzungen:     | Modul Algebra                                  |

**Lernziele:** Die Studierenden sollen
- Klassische Matrixgruppen und ihre Lie-Algebren kennenlernen,
- den Zusammenhang zwischen einer Lie-Gruppe und ihrer Lie-Algebra verstehen,
- Einblick in die Strukturtheorie von Lie-Gruppen gewinnen.

**Lehrinhalt:**
- Lineare Liegruppen (Matrixgruppen),
- Lie-Algebren und Exponentialfunktion,
- Lokale Eigenschaften einer Liegruppe, Baker-Campbell-Hausdorff Formel,
- Topologische Gruppen, Fundamentalgruppen und Überlagerungen,
- Liegruppen als differenzierbare Mannigfaltigkeiten,
- Halbeinfache und kompakte Liegruppen.

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Skripte</td>
</tr>
</tbody>
</table>

**Literatur:**
- J. Hilgert, K.-H. Neeb: Lie-Gruppen und Lie-Algebren
- D. Bump: Lie Groups
- A. Sagle, R. Walde, Introduction to Lie Groups and Lie Algebras
- A. W. Knapp: Lie Groups beyond an Introduction
Spektraltheorie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Spektraltheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Spektraltheorie</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Demuth, Dr. habil. J. Brasche</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik im Master-studien-gang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jedes zweite Jahr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spektraltheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Spektraltheorie</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spektraltheorie</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zur Spektraltheorie</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |
| Voraussetzungen: | Modul Operatortheorie |

Lernziele: Die Studierenden sollen
- die Grundzüge der Spektraltheorie selbstadjungierter Operatoren lernen,
- das Spektrum von partiellen Differentialoperatoren analysieren,
- die unterschiedlichen Spektralanteile und deren Nachweise studieren.

Fortsetzung auf der Rückseite
**Lehrinhalt:** (Auswahl)
- Kriterien für die Selbstadjungiertheit von Operatoren;
- Kato-Rellich Theorie, Schrödinger Operatoren;
- kompakte Operatoren, Riesz-Schauder Theorem;
- Spektralscharen, Spektralsatz
- wesentliches, diskretes, absolutstetiges, singulär stetiges Spektrum;
- Wasserstoffatom, Mini-Max Prinzip;
- spektrale Einteilung von Zuständen.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skripte</td>
</tr>
</tbody>
</table>

**Literatur:**
- Weidmann, J.: Lineare Operatoren in Hilberträumen, Teil 2, Teubner
- Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Teil 3 und 4, Academic Press
Stochastische Spektralanalyse

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Stochastische Spektralanalyse</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Stochastische Spektralanalyse</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Demuth</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Demuth</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik im Master-studiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Modulldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>nach Bedarf</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Spektralanalyse</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur stoch. Spektralanalyse</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Spektralanalyse</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übung zur stoch. Spektralanalyse</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen: Module Operatortheorie und Spektraltheorie

Lernziele: Die Studierenden sollen
- den Zusammenhang zwischen Stochastik und Spektraltheorie kennenlernen,
- die Theorie der Markov Prozesse und deren Erzeugen erlernen,
- Verbindungen zur Halbgruppentheorie und zur Theorie der Integraloperatoren erkennen,
- stochastische Kriterien für die Charakterisierung des Spektrums lernen.

Fortsetzung auf der Rückseite
**Lehrinhalt:**
- Konstruktion stochastischer Prozesse;
- Grundlagen der stochastischen Spektraltheorie;
- Feller Prozesse und deren Erzeuger;
- Feynman-Kac-Formel für reguläre und singuläre Potentiale;
- Eigenschaften von Halbgruppendifferenzen und spektrale Konsequenzen daraus;
- Zusammenhang zur Streutheorie und zur harmonischen Analysis.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skripte</td>
</tr>
</tbody>
</table>

**Literatur:**
- Simon, B.: Functional Integration and Quantum Physics, Academic Press
- Davies, E. B., Heat Kernels and Spectral Theory, Cambridge Univ. Press,
### Einführung in die Theorie Sobolevscher Räume

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Theorie Sobolevscher Räume</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Sobolev-Räume</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Einführung in die Theorie Sobolevscher Räume mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>N. N. (Professur Differentialgleichungen)</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>N. N. (Professur Differentialgleichungen)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik oder Numerische Mathematik im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jedes zweite Jahr, im Wechsel mit anderen Wahlpflichtveranstaltungen</td>
</tr>
</tbody>
</table>

#### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorie Sobolevscher Räume</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Sobolevschen Räumen</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

#### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorie Sobolevscher Räume</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zu Sobolevschen Räumen</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

#### Kreditpunkte: 6

#### Voraussetzungen: Modul Funktionalanalysis


*Fortsetzung auf der Rückseite*
**Lehrinhalt:** (Auswahl)
- $L^p$-Räume, Distributionen, schwache Lösungen
- Sobolevsche Normen und Funktionen, $H=W$.
- Poincarésche Ungleichung, Äquivalente Normen
- Einbettungssätze
- Spuroperatoren
- Anwendungen in der Lösungstheorie von Randwert- und Variationsproblemen

**Studien-/Prüfungsleistungen:**
- Klausur oder Mündliche Prüfung

**Medienformen:**
- Tafel, Skript, Folie

**Literatur:**
Harmonische Analyse

| Studiengang: | Master Angewandte Mathematik |
| Modulbezeichnung: | Harmonische Analyse |
| Kürzel: |
| Untertitel: |
| Lehrveranstaltungen: | Vorlesung Harmonische Analyse |
| Modulverantwortliche(r): | Prof. Dr. M. Rösler |
| Dozenten: | Prof. Dr. M. Rösler |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum: | Wahlpflichtmodul Analysis/Reine Mathematik im Masterstudiengang Angewandte Mathematik |
| Semester: | ab 2. Semester |
| Modulduer: | 1 Semester |
| Angebotsturnus: | nach Bedarf |

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie-Gruppen</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie-Gruppen</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6


Lernziele: Die harmonische Analyse ist die Weiterführung der klassischen Fourieranalyse; dabei interessiert man sich für die Analyse und Synthese von Funktionen auf Gruppen und allgemeineren Räumen mit Symmetrien. Die Studierenden sollen
- die Einbettung der klassischen Fourieranalyse in den abstrakten Rahmen der harmonischen Analyse verstehen;
- Einblick in die Theorie lokalkompakter Gruppen und ihrer Darstellungen gewinnen.

Fortsetzung auf der Rückseite
**Lehrinhalt:** (Auswahl von Themen)
- Topologische Gruppen, Matrixgruppen, Beispiele (Drehgruppen, Lorentzgruppe);
- Haarmaß auf lokalkompakten Gruppen;
- Homogene Räume;
- Fourieranalyse auf lokalkompakten abelschen Gruppen (insbesondere Torus und \( \mathbb{R}^n \));
- Unitäre Darstellungen von Gruppen, Irreduzibilität, Lemma von Schur;
- Gruppentheoretischer Zugang zur Wavelet-Analyse;
- Darstellungstheorie kompakter Gruppen, Satz von Peter-Weyl.

**Studien-/Prüfungsleistungen:**
Klausur oder Mündliche Prüfung

**Medienformen:**
Tafel, Folien, Skripte

**Literatur:**
Spezielle Funktionen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Spezielle Funktionen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Spezielle Funktionen mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Rösler</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Analysis/Reine Mathematik im Master-studiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>nach Bedarf</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezielle Funktionen</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Spezielle Funktionen</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezielle Funktionen</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Spezielle Funktionen</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6


Fortsetzung auf der Rückseite
Lernziele: Spezielle Funktionen tauchen in zahlreichen Bereichen der Mathematik und ihren Anwendungen auf. In dieser Vorlesung werden wichtige Klassen solcher Funktionen unter einem systematisch-strukturellen Blickwinkel behandelt. Die Studierenden sollen dabei
– wichtige Klassen spezieller Funktionen kennenlernen
– Verständnis für Bezüge sowohl zu Anwendungsproblemen als auch strukturellen Hintergründen (z.B. Gruppendarstellungen) gewinnen
– einen Einblick gewinnen in die moderne Theorie multivaribler spezieller Funktionen
– Grundlagen erwerben für eine Abschlussarbeit in diesem Gebiet.

Lehrinhalt: (Auswahl von Themen)
– Gamma- und Betafunktion;
– Orthogonale Polynome: allgemeine Theorie und klassische Systeme (Hermite, Laguerre, Jacobi), Anwendungsbeispiele (z.B. aus der Quantenmechanik);
– Analysis auf Sphären: sphärische Harmonische und Kugelfunktionen;
– Gruppendarstellungen und spezielle Funktionen;
– Hypergeometrische Funktionen, Besselfunktionen und radiale Analysis;
– Ausblick auf die multivariate Theorie, symmetrische Funktionen.

Studien-/Prüfungsleistungen: Klausur oder Mündliche Prüfung

Medienformen: Tafel, Folien, Skripte

Literatur:
– Chihara, T.S.: An Introduction to Orthogonal Polynomials, Gordon and Breach 1978
– Temme, N.: Special Functions – An Introduction to the Classical Functions of Mathematical Physics, Wiley 1996
**Numerische Mathematik III**

| Studiengang: | Master Angewandte Mathematik  
| Bachelor Angewandte Mathematik |
|---|---|
| Modulbezeichnung: | Numerische Mathematik III |
| Kürzel: | Numerik III |
| Untertitel: | Fortgeschrittene Methoden der numerischen Behandlung gewöhnlicher und partieller Differentialgleichungen |
| Lehrveranstaltungen: | Vorlesung Numerische Mathematik III mit begleitenden Übungen |
| Modulverantwortliche(r): | Prof. Dr. L. Angermann |
| Dozenten: | Prof. Dr. L. Angermann, Dr. H. Behnke, PD Dr. B. Mulansky |
| Sprache: | Deutsch |

**Zuordnung zum Curriculum:** Wahlpflicht Numerische Mathematik im Masterstudiengang Angewandte Mathematik, nutzbar als Wahlpflichtmodul C im Bachelorstudiengang Angewandte Mathematik

<table>
<thead>
<tr>
<th>Semester:</th>
<th>2. bzw. 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Mathematik III</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Numerischen Mathematik III</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Mathematik III</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Numerischen Mathematik III</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Module Numerische Mathematik I, Numerische Mathematik II

*Fortsetzung auf der Rückseite*
**Lernziele:** Die Studierenden sollen
- moderne Methoden der numerischen Behandlung gewöhnlicher und partieller Differentialgleichungen kennenlernen.
- Einsicht und Intuition in die numerische Arbeitsweise und Sensibilität für spezielle numerische Problematiken wie Stabilität und Fehlerkontrolle entwickeln.
- in der Lage sein, den Einsatz numerischer Verfahren kompetent durchzuführen. Insbesondere sollen die Algorithmen unter Verwendung aktueller Software-Umgebungen (Matlab, Mathematica) angewendet und getestet werden.
- die zahlreichen Querverbindungen zu anderen mathematischen Gebieten wie Lineare Algebra, Analysis, Geometrie, gewöhnliche und partielle Differentialgleichungen usw. erkennen.

**Lehrinhalt:** Verfahren für differential-algebraische Gleichungen, Diskontinuierliche Galerkin-Verfahren, Einführung in die Finite-Elemente-Methode, Verfahren zur Lösung großer, schwachbesetzter algebraischer Gleichungssysteme

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medienformen:</strong></td>
<td>Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Großmann, Roos: Numerik partieller Differentialgleichungen, Teubner
- Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Teubner
- Quarteroni, Sacco, Saleri: Numerische Mathematik 2, Springer
**Finite-Elemente-Methoden**

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td><strong>Finite-Elemente-Methoden</strong></td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td>FEM</td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td>Grundlagen der FEM</td>
</tr>
<tr>
<td><strong>Lehrveranstaltungen:</strong></td>
<td>Vorlesung Finite-Elemente-Methoden mit begleitenden Übungen</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. L. Angermann</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. L. Angermann</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch</td>
</tr>
<tr>
<td><strong>Zuordnung zum Curriculum:</strong></td>
<td>Wahlpflichtmodul Numerische Mathematik im Masterstudium Angewandte Mathematik</td>
</tr>
<tr>
<td><strong>Semester:</strong></td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td><strong>Moduldauer:</strong></td>
<td>1 Semester</td>
</tr>
<tr>
<td><strong>Angebotsturnus:</strong></td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite-Elemente-Methoden</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Finite-Elemente-Methoden</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite-Elemente-Methoden</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Übungen zu Finite-Elemente-Methoden</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 9

**Voraussetzungen:** Bachelor Angewandte Mathematik, Modul Numerische Mathematik III

**Lernziele:** Die Studierenden sollen

- theoretische Grundlagen der Finite-Elemente-Methode zur Behandlung partieller Differentialgleichungen umfassend kennenlernen.
- Intuition bei der Auswahl geeigneter Finite-Elemente-Methoden entwickeln.
- Einsicht in die Struktur von Finite-Elemente-Software gewinnen und solche Software einsetzen können.

*Fortsetzung auf der Rückseite*
| Lehrinhalt: Variationsformulierung nicht notwendig selbstadjungierter elliptischer Randwertaufgaben, Finite Elemente und Approximation, Galerkin-Verfahren (auch nichtkonform) für elliptische Gleichungen zweiter und vierter Ordnung, Implementierung, Vertikale Linienmethode für parabolische Gleichungen |
|---|---|
| Studien-/Prüfungsleistungen: | Klausur oder Mündliche Prüfung |
| Medienformen: | Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript |
| Literatur: |  |
| – Großmann, Roos: Numerik partieller Differentialgleichungen, Teubner |
| – Braess: Finite Elemente, Springer |
| – Brenner, Scott: The Mathematical Theory of Finite Element Methods, Springer |
Finite-Volumen-Methoden

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Finite-Volumen-Methoden</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FVM</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Finite-Volumen-Methoden für elliptische und parabolische Differentialgleichungen</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Finite-Volumen-Methoden mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. L. Angermann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. L. Angermann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Numerische Mathematik im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>aller zwei Jahre im SS</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Lehrform</td>
</tr>
<tr>
<td>Finite-Volumen-Methoden</td>
<td>V</td>
</tr>
<tr>
<td>Übungen zu Finite-Volumen-Methoden</td>
<td>Ü</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>Finite-Volumen-Methoden</td>
<td>60</td>
</tr>
<tr>
<td>Übungen zu Finite-Volumen-Methoden</td>
<td>30</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>9</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Bachelor Angewandte Mathematik, Modul Numerische Mathematik III</td>
</tr>
</tbody>
</table>

Fortsetzung auf der Rückseite
**Lernziele:** Die Studierenden sollen
- theoretische Grundlagen der Finite-Volumen-Methode zur Behandlung partieller Differentialgleichungen umfassend kennenlernen.
- Einsicht in die Struktur von Finite-Volumen-Software gewinnen und solche Software einsetzen können.

**Lehrinhalt:** Gebietspartitionierungen, Elliptische Probleme (insbesondere konvektionsdominierte Gleichungen), A posteriori Fehlerabschätzungen, Implementierung, Parabolische Probleme, Navier-Stokes-System.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Knabner, Angermann: Numerik partieller Differentialgleichungen, Springer
- Bey: Finite-Volumen- und Mehrgitterverfahren für elliptische Randwertprobleme, Teubner
- Kröner: Numerical schemes for Conservation Laws, Wiley/Teubner
Parallele Numerik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Parallele Numerik</td>
</tr>
</tbody>
</table>

Kürzel:  

Untertitel:  

Lehrveranstaltungen: Vorlesung Parallele Numerik mit begleitenden Übungen  

Modulverantwortliche(r): Prof. Dr. L. Angermann  

Dozenten: Prof. Dr. L. Angermann, Dr. H. Behnke, PD Dr. B. Mulansky  

Sprache: Deutsch  

Zuordnung zum Curriculum: Wahlpflichtmodul Numerische Mathematik im Masterstudium Angewandte Mathematik  

Semester: ab 1. Semester  

Moduldauer: 1 Semester  

Angebotsturnus: aller zwei Jahre im WS  

Lehrformen:  

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallele Numerik</td>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Paralleln Numerik</td>
<td>Ü</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:  

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallele Numerik</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Übungen zur Paralleln Numerik</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9  

Voraussetzungen: Bachelor Angewandte Mathematik  

Lernziele: Die Studierenden sollen

– Verständnis für die grundlegenden Prinzipien der Parallelisierung numerischer Basisverfahren entwickeln.  
– in der Lage sein, den Einsatz paralleler numerischer Verfahren kompetent durchzuführen. Insbesondere soll die Umsetzung der Verfahren am PC-Cluster des Institutes geübt und die sachgerechte Auswahl vorhandener Software geschult werden.  
– die zahlreichen Querverbindungen zu anderen Gebieten wie Informatik, Geometrie usw. erkennen.  

Fortsetzung auf der Rückseite
| Lehrinhalt: Architektur von Parallelrechnern, Einführung in MPI, Direkte und iterative parallele Verfahren zur Lösung großer, schwachbesetzter algebraischer Gleichungssysteme, Überblick zu parallelen Verfahren der Optimierung und der Visualisierung |
| Studien-/Prüfungsleistungen: Klausur oder Mündliche Prüfung |
| Medienformen: Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript |
| Literatur: |
| – Alefeld, Lenhard, Obermaier: Parallele Numerische Verfahren, Springer |
| – Schwandt: Parallele Numerik, Teubner |
| – Haase: Parallelisierung numerischer Algorithmen für partielle Differentialgleichungen, Teubner |
**Approximationstheorie**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Approximationstheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Numerische Methoden der Approximation</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Approximationstheorie mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>PD Dr. B. Mulansky</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>PD Dr. B. Mulansky</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Numerische Mathematik im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im WS im Wechsel mit anderen Wahlpflichtangeboten</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximationstheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Approximationstheorie</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximationstheorie</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Approximationstheorie</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Bachelor Angewandte Mathematik

*Lernziele:* Splines, also stückweise polynomialen Funktionen, werden zur Approximation von Funktionen, zur Interpolation, zur Glättung und zum Ausgleich von Daten, aber auch beim Kurvenentwurf im CAGD eingesetzt. In der Lehrveranstaltung werden die dafür wichtigen Eigenschaften der B-Spline-Darstellung und die zugehörigen Algorithmen behandelt. Einführend wird die klassische Theorie der Approximation durch Polynome besprochen, und abschließend soll auch ein Ausblick auf Wavelets erfolgen.

*Fortsetzung auf der Rückseite*
**Lehrinhalt:**
Approximation durch Polynome: Approximationssatz von Weierstrass, Chebyshev-
Approximation, $L_2$-Approximation, Grad der Approximation
Approximation durch Splines: Definition und Eigenschaften der B-Splines, Linearkombi-
binationen von B-Splines, de Boor-Algorithmus, Knoteneinfügung und Graderhöhung,
Variationsverminderung, Interpolation, Approximation und Glättung
Wavelets und deren Anwendungen

| Studien-/Prüfungs-
leistungen: | Klausur oder Mündliche Prüfung |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- Hettich, Zencke: Numerische Methoden der Approximation und semi-infiniten Op-
timierung, Teubner 1982.
## Finanznumerik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Finanznumerik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Finanznumerik mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>PD Dr. B. Mulansky</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>PD Dr. B. Mulansky</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Numerische Mathematik im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im WS im Wechsel mit anderen Wahlpflichtangeboten</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanznumerik</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Finanznumerik</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanznumerik</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Finanznumerik</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

6

### Voraussetzungen:

Bachelor Angewandte Mathematik

**Lernziele:** Zahlreiche Modelle der modernen Finanzmathematik erfordern numerische Verfahren zur näherungsweisen Lösung der entstehenden Probleme. In der Lehrveranstaltung sollen Beispiele derartiger Problemstellungen präsentiert und daran exemplarisch die Möglichkeiten zur numerischen Behandlung demonstriert werden.

*Fortsetzung auf der Rückseite*
**Lehrinhalt:**
nichtlineare Gleichungen bei der Ermittlung von Renditen (Effektivverzinsungen),
lineare und nichtlineare Regression für Rentenindices und zur Schätzung von Zins-
strukturen,
Differenzenverfahren für BLACK-SCHOLES-Differentialgleichungen und -ungleichungen
zur Bewertung von Optionen,
Bewertung von Optionen durch Simulation mittels Pseudo- und Quasizufallszahlen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beamer-Präsentationen, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
Stochastische Simulation

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Stochastische Simulation</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>StochSim</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Grundlagen und Anwendungen der stochastischen Simulation</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Stochastische Simulation mit begleitenden Übungen und Rechnerpraktikum</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Stochastik im Masterstudiengang Angewandte Mathematik, Wahlpflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Simulation</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übung und Praktikum zu Stochastische Simulation</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Simulation</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übung und Praktikum zu Stochastische Simulation</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen: Module Angewandte stochastische Prozesse I und II


Fortsetzung auf der Rückseite
**Lehrinhalt:** Zufallsgeneratoren, Güteuntersuchung von Zufallsgeneratoren, Erzeugung von Zufallszahlen mit vorgegebener Verteilung und Abhängigkeiten, Techniken für den Aufbau von Simulationsexperimenten, Datenanalyse, Varianzreduktion

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer, online-Skript, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
## Angewandte stochastische Prozesse I

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte stochastische Prozesse I</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Angewandte stochastische Prozesse I</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

## Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte stochastische Prozesse I</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Angewandte stochastische Prozesse I</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

## Kreditpunkte:

6

## Voraussetzungen:

Grundlagen der Wahrscheinlichkeitstheorie

## Lernziele:

Die Studierenden sollen einige Grundfragestellungen, Techniken und Anwendungen einfacher stochastischer Prozesse kennenlernen.

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th><strong>Lehrinhalt:</strong></th>
<th>Maßtheoretische Grundlagen stochastischer Prozesse, Poisson-Prozess, Erneuerungsprozesse, Erneuerungsgleichungen, regenerative Prozesse, Markoff Prozesse, Anwendungen.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Studien-/Prüfungsleistungen:</strong></td>
<td>Klausur oder Mündliche Prüfung</td>
</tr>
<tr>
<td><strong>Medienformen:</strong></td>
<td>Tafel, Folien/Beamer, online-Skript, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
## Angewandte stochastische Prozesse II

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Angewandte stochastische Prozesse II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>StochProzII</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Einführung in die stochastischen Prozesse und ihre Anwendungen</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Angewandte stochastische Prozesse II mit Übungen</td>
</tr>
<tr>
<td>Modularverantwortliche(r):</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

### Zuordnung zum Curriculum:
Wahlpflichtmodul Stochastik im Masterstudiengang Angewandte Mathematik, Pflichtmodul im Masterstudiengang Operations Research

<table>
<thead>
<tr>
<th>Semester:</th>
<th>2. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte stochastische Prozesse II</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Angewandte stochastische Prozesse II</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte stochastische Prozesse II</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Angewandte stochastische Prozesse II</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

### Kreditpunkte:
6

### Voraussetzungen:
Module Grundlagen der Wahrscheinlichkeitstheorie, Angewandte stochastische Prozesse I

### Lernziele:
Die Studierenden sollen sich mit komplexeren Prozessen und ihren Anwendungen beschäftigen. Damit sollen Sie in die Lage versetzt werden, grundlegende stochastische Modelle vor allem des Operations Research verstehen, anwenden und weiterentwickeln zu können.

*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Vertiefung Markoff-Ketten in diskreter und stetiger Zeit, semi-Markoff-Prozesse, Markoff’sche Erneuerungsprozesse und semi-regenerative Prozesse, Prozesse mit allg. Zustandsraum, Brown’sche Bewegung, Anwendungen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/beamer, online-Skript, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
## Datenanalyse und Datenmanagement

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td>Datenanalyse und Datenmanagement</td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td>DatMgmnt</td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Lehrveranstaltungen:</strong></td>
<td>Vorlesung Datenanalyse und Datenmanagement mit begleitenden Übungen</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko, NN</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

**Zuordnung zum Curriculum:** Wahlpflichtmodul Stochastik im Masterstudiengang Angewandte Mathematik, Pflichtmodul im Masterstudiengang Operations Research

| **Semester:** | 1. Semester |
| **Moduldauer:** | 1 Semester |
| **Angebotsturnus:** | jährlich im WS |

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenanalyse und Datenmanagement</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Datenanalyse und Datenmanagement</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenanalyse und Datenmanagement</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Datenanalyse und Datenmanagement</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Module Grundlagen der Wahrscheinlichkeits-theorie, Stoch. Simulation und Statistik

*Fortsetzung auf der Rückseite*
**Lernziele:** In dieser Veranstaltung sollen die Studierenden die theoretischen und praktischen Fragestellungen der Aufbereitung und Analyse von Beobachtungsdaten mit den Methoden der modernen Statistik erlernen. Die Übungen enthalten daher auch einen stark rechnerbezogenen Anteil.
Diese Vorlesung ergänzt und vertieft die in Bachelor (Vorlesung ‘Stoch. Simulation und Statistik’) angerissenen Themen der Statistik. Der Schwerpunkt liegt wieder auf den anwendungsbezogenen Fragestellungen.

**Lehrinhalt:** Explorative Datenanalyse/ beschreibende Statistik, mathematische Entscheidungstheorie, Punktschätzung, Konfidenzschätzung, Testtheorie, Tests bei Normalverteilung, Anpassungstests, Verteilungsfreie Verfahren, Grundlagen linearer Modelle, Regressionsanalyse, Varianzanalyse, Data Mining.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer</td>
</tr>
</tbody>
</table>

**Literatur:**
Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
Stochastische Analyse heuristischer Optimierungsverfahren

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Stochastische Analyse heuristischer Optimierungsverfahren</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>StochOpt</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Stochastische Analyse heuristischer Optimierungsverfahren</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum: Wahlpflichtmodul Stochastik im Masterstudiengang Angewandte Mathematik, Wahlpflichtmodul im Masterstudiengang Operations Research

| Semester: | 3. Semester |
| Mculduaer: | 1 Semester |
| Angebotsturnus: | jährlich im WS |

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Analyse heuristischer Optimierungsverfahren</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische Analyse heuristischer Optimierungsverfahren</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 3

Voraussetzungen: Module Angewandte stochastische Prozesse I und II

Lernziele: Es sollen einige populäre heuristische Optimierungsmethoden aus stochastischer Sicht, insbesondere in Hinblick auf ihr Konvergenzverhalten untersucht werden.


Studien-/Prüfungsleistungen: Klausur oder Mündliche Prüfung

Medienformen: Tafel, Folien/Beamer

Fortsetzung auf der Rückseite
Literatur:

– S. Anily und A. Federgruen, Simulated Annealing Methods with general Acceptance

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
**Stochastische dynamische Optimierung**

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td>Stochastische dynamische Optimierung</td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td>DynOpt</td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Lehrveranstaltungen:</strong></td>
<td>Vorlesung Stochastische dynamische Optimierung</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch</td>
</tr>
<tr>
<td><strong>Zuordnung zum Curriculum:</strong></td>
<td>Wahlpflichtmodul Stochastik im Masterstudiengang Angewandte Mathematik, Wahlpflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td><strong>Semester:</strong></td>
<td>3. Semester</td>
</tr>
<tr>
<td><strong>Modulduer:</strong></td>
<td>1 Semester</td>
</tr>
<tr>
<td><strong>Angebotsturnus:</strong></td>
<td>im Wechsel mit anderen WP-Modulen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Name</strong></th>
<th><strong>Lehrform</strong></th>
<th><strong>SWS</strong></th>
<th><strong>Gruppengr.</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische dynamische Optimierung</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Name</strong></th>
<th><strong>Kontaktzeit</strong></th>
<th><strong>Eigenst.</strong></th>
<th><strong>Summe</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastische dynamische Optimierung</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

| **Kreditpunkte:** | 3 |

**Voraussetzungen:** Module Angewandte Stochastische Prozesse I und II

**Lernziele:** Es sollen die Grundlagen der stochastischen dynamischen Optimierung vermittelt werden unter Einschluss moderner, simulationbasierter Ansätze.

**Lehrinhalt:** Modell der dynamischen Optimierung, Gesamtkosten- und Durchschnittskostenkriterium, Optimalitätsgleichung, Wertiteration und Policy Iteration.

**Studien-/Prüfungsleistungen:** Klausur oder Mündliche Prüfung

**Medienformen:** Tafel, Folien/beamer

*Fortsetzung auf der Rückseite*
Literatur:
- Sennott, L. “Stochastic Dynamic Programming”
Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
### Warteschlangentheorie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Warteschlangentheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Mathematische Modellbildung in der Warteschlangentheorie</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Warteschlangentheorie mit begleitenden Übungen und Rechnerpraktikum</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

**Zuordnung zum Curriculum:** Wahlpflichtmodul Stochastik im Masterstudiengang Angewandte Mathematik, Wahlpflichtmodul im Masterstudiengang Operations Research

<table>
<thead>
<tr>
<th>Semester:</th>
<th>3. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im Wechsel mit anderen Wahlpflichtmodulen, WS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warteschlangentheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übung und Praktikum zur Warteschlangentheorie</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warteschlangentheorie</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übung und Praktikum zur Warteschlangentheorie</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:** Module Angewandte stoch. Prozesse I und II

**Lernziele:** Die Studierenden sollen lernen, praktische Warte- und Bediensituationen adäquat zu modellieren und die mit dem Modell assoziierten Kenngrößen zu berechnen.

*Fortsetzung auf der Rückseite*

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer, online-Skript, Skript</td>
</tr>
</tbody>
</table>

Literatur:

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
Luftverkehrsmanagement

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Luftverkehrsmanagement</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Luftverkehrsmanagement mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. M. Frank, Dr. M. Mederer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. M. Frank, Dr. M. Mederer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Angewandte Mathematik, Wahlpflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftverkehrsmanagement</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Luftverkehrsmanagement</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftverkehrsmanagement</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Luftverkehrsmanagement</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** | 6 |

**Voraussetzungen:** | Module Grundlagen der Wahrscheinlichkeitstheorie, Stoch. Simulation und Statistik |

**Lernziele:** Die Studierenden sollen die grundlegenden Zusammenhänge zwischen den drei wesentlichen Partnern im Luftverkehr (Fluggesellschaften, Flughäfen und Flugsicherung) kennenlernen. Die Methoden und Verfahren der Partner sollen mit ihren Interdependenzen verstanden werden. Selbständige Handhabung von Simulationsmethoden zur Lösung von Problemen des Luftverkehrsmanagements.

*Fortsetzung auf der Rückseite*

Projekarbeit

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer</td>
</tr>
</tbody>
</table>

**Literatur:**
- Pompl, W.: Luftverkehr. Springer 2002
## Nichtlineare Optimierung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Nichtlineare Optimierung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>NLO</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Nichtlineare Optimierung mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. P. Huhn</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. P. Huhn, PD Dr. B. Mulansky, u.a.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtlineare Optimierung</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Nichtlinearen Optimierung</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtlineare Optimierung</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zur Nichtlinearen Optimierung</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

6

### Voraussetzungen:

Grundmodule Analysis, Lineare Algebra und diskrete Strukturen

Fortsetzung auf der Rückseite
Lernziele:
- Einsicht in die analytische und geometrische Struktur und Verständnis der Optimalitäts- und Dualitätstheorie allgemeiner restringierter und unrestringierter Optimierungsprobleme
- Kenntnis und Beherrschung der Lösungsansätze
- Fähigkeit zur Modellierung, Lösung (ggf. mittels Software) von Optimierungsprobleme bei praktischen Problemstellungen

Lehrinhalt:
- Konvexe Mengen und Funktionen, Optimalitätskriterien, Dualität,
- Liniensuchverfahren, Verfahren für unrestringierte und restringierte Optimierungsprobleme (z.B. Richtungssuch-, Quasi-Newton-, CG-Verfahren, Trust-Region- und Projektionsverfahren, Straf- und Barrierefunktions-Verfahren)

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

Literatur:
- M. Bazaraa, H. Sherali, C. Shetty: Nonlinear Programming, Theory and Applications
- C. Geiger, C. Kanzow: Numerische Verfahren zur Lösung unrestringierter Optimierungsprobleme
- J. Nocedal, St. J. Wright: Numerical Optimization
Weitere Literatur wird im Rahmen der jeweiligen Veranstaltung angegeben.
## Graphentheorie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Graphentheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Graphentheorie mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. P. Huhn</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. W. Klotz, Prof. Dr. P. Huhn, u.a.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im regelmäßigen Wechsel mit anderen Wahlpflichtmoduln, (WS)</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphentheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Graphentheorie</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphentheorie</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zur Graphentheorie</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

6

### Voraussetzungen:

Grundmodul Lineare Algebra und diskrete Strukturen, Modul Komb. Optimierung

### Lernziele:

Die Studierenden sollen
- erweiterte Kenntnisse in der Graphentheorie und ihren Methoden erwerben,
- Anwendungen in graphentheoretische Probleme umsetzen und modellieren und geeignete Softwaresystem kennenlernen,
**Lehrinhalt:**
- speziellere graphentheoretische Begriffe und Probleme: z.B. Mehrgüterflüsse, gewichtete Matchings, Hypergraphen, Matroide, submodulare Funktionen, Steinerbäume, zufällige Graphen und ihre Eigenschaften
- neuere effiziente und/oder parallele Verfahren für verschiedene graphentheoretische Probleme, Aufwand und Komplexität von Algorithmen und Problemstellungen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- W. Aldous: Graphs and Applications
- D. Jungnickel: Graphs, Networks and Algorithms
- B. Korte, J. Vygen: Combinatorial Optimization
- C.H. Papadimitriou und K. Steiglitz: Combinatorial Optimization – Algorithm and Complexity
## Ganzzahlige Optimierung

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td>Ganzzahlige Optimierung</td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td>IntegerOpt</td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td>Vorlesung Ganzzahlige Optimierung mit begleitenden Übungen</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. P. Huhn</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. P. Huhn, u.a.</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch</td>
</tr>
<tr>
<td><strong>Zuordnung zum Curriculum:</strong></td>
<td>Wahlpflichtmodul Diskrete Mathematik &amp; Optimierung im Masterstudiengang Angewandte Mathematik, Wahlpflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td><strong>Semester:</strong></td>
<td>2. Semester</td>
</tr>
<tr>
<td><strong>Moduldauer:</strong></td>
<td>1 Semester</td>
</tr>
<tr>
<td><strong>Angebotsturnus:</strong></td>
<td>im regelmäßigen Wechsel mit anderen Wahlpflichtmoduln, (SS)</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganzzahlige Optimierung</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Ganzzahlige Optimierung</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganzzahlige Optimierung</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Ganzzahlige Optimierung</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

- 6

**Voraussetzungen:** Grundmodule Analysis und Lineare Algebra und Diskrete Strukturen, Module Lineare und Komb. Optimierung

*Fortsetzung auf der Rückseite*
### Lernziele:
- Einsicht in die analytische und geometrische Struktur ganzzahliger Optimierungsprobleme
- Kenntnis und Beherrschung der Lösungsansätze
- Fähigkeit zur Modellierung, Lösung (ggf. mittels Software) von Optimierungsprobleme bei praktischen Problemstellungen

### Lehrinhalt:
- Polyeder- und Komplexitätstheorie für ganzzahlige lineare Optimierungsproblemen
  Lösungsverfahren und -techniken: z.B. Branch & Bound-/Price/Cut-Verfahren, Schnittebenen, Liftings, Lagrange- und Dekompositionsansätze
- Gemischt-ganzzahlige Optimierung
- Gitter, diophantische (Un-)Gleichungen, Gröbnerbasen
  Algebraische Methoden für ganzzahlige Optimierungsprobleme, Testmengen, Optimierung mit Testmengen
- Nichtlineare Ganzzahlige Optimierung

### Studien-/Prüfungsleistungen:
- Klausur oder Mündliche Prüfung

### Medienformen:
- Tafel, Folien, Rechnervorführungen, Skript

### Literatur:
- Th. Becker, V. Weispfenning: Gröbner Bases - A Computational Approach to Commutative Algebra
- M. Grötschel, L. Lovasz, A. Schrijver: Geometric Algorithms and Combinatorial Optimization
- A. Schrijver: Theory of linear and integer programming

Weitere Literatur wird im Rahmen der jeweiligen Veranstaltung angegeben.
Optimierungsheuristiken

| Studiengang: | Master Angewandte Mathematik, Master Operations Research |
| Modulbezeichnung: | Optimierungsheuristiken |
| Kürzel: | OptHeur |
| Untertitel: | |
| Lehrveranstaltungen: | Vorlesung Optimierungsheuristiken mit begleitenden Übungen |
| Modulverantwortliche(r): | Prof. Dr. P. Huhn |
| Dozenten: | Prof. Dr. P. Huhn, Prof. Dr. M. Kolonko, Prof. Dr. Zimmermann, u.a. |
| Sprache: | Deutsch |
| Semester: | ab 1. Semester |
| Moduldauer: | 1 Semester |
| Angebotsturnus: | jährlich im SS (im Wechsel mit dem Institut für Wirtschaftswissenschaft) |

### Lehrformen

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimierungsheuristiken</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Optimierungsheuristiken</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimierungsheuristiken</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zu Optimierungsheuristiken</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen: Grundmodul Lineare Algebra und diskrete Strukturen, Modul Kombinatorische Optimierung, Grundkenntnisse in der Optimierung

Lernziele:
- Kenntnisse wichtiger heuristischer Optimierungsansätze
- Fähigkeit zur Anwendung der Heuristiken auf praktische Problemstellungen

*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Lokale und zufällige Suchverfahren, Tabusuche, genetische/evolutonäre Algorithmen, Simulated Annealing, Ameisen-Algorithmen, Constraint Programming

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**

- D. Corne, M. Dorigo and F. Glover: New Ideas in Optimization
- C. Reeves: Modern Heuristic Techniques for Combinatorial Problems
- Z. Michalewicz, D.B. Fogel: How to Solve It – Modern Heuristics

Weitere Literatur wird im Rahmen der jeweiligen Veranstaltung angegeben.
## Multikriterielle Optimierung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Multikriterielle Optimierung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MultiOpt</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Vorlesung Multikriterielle Optimierung mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. P. Huhn</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. P. Huhn, u.a.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im regelmäßigen Wechsel mit anderen Wahlpflichtmoduln, (WS)</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multikriterielle Optimierung</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Multikriteriellen Optimierung</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multikriterielle Optimierung</td>
<td>45</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Übungen zur Multikriteriellen Optimierung</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

### Kreditpunkte: 6

### Voraussetzungen:

Grundmodule Analysis, Lineare Algebra und diskrete Strukturen, Module Lineare und Komb. Optimierung

*Fortsetzung auf der Rückseite*
**Lernziele:**
- Einsicht in die Problematik und analytische Struktur multikriterieller Optimierungsprobleme
- Kenntnis und Beherrschung der Lösungsansätze
- Fähigkeit zur Modellierung und Lösung (ggf. mittels Software)
- Kritische Beurteilung der Ergebnisse

**Lehrinhalt:**
- Mengen- und Vektorwertige Funktionen, Entscheidungs- und Bewertungsräume, partielle Ordnungen,
- Pareto-Optimalität, Dominanz, Effizienz, weitere Optimalitätskriterien, Dualität, Vektor-Variations- und Minimax-Prinzipien,
- Lösungsansätze und Verfahren: z.B. Nutzenfunktion, Skalarisierung, e-Constrained, Approximation,
- Spezialfälle wie z.B. multikriterielle lineare und kombinatorische Optimierungsprobleme

**Studien-/Prüfungsleistungen:** Klausur oder Mündliche Prüfungen

**Medienformen:** Tafel, Folien, Rechnervorführungen, Skript

**Literatur:**
- M. Ehrgott: Multicriteria Optimization
- J. Jahn: Vector Optimization
- Y. Collette, P. Siarry: Multiobjective Optimization
Weitere Literatur wird im Rahmen der jeweiligen Veranstaltung angegeben.
Spezielle (kombinatorische) Optimierungsprobleme

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Spezielle (kombinatorische) Optimierungsprobleme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. W. Klotz</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. W. Klotz, Prof. Dr. P. Huhn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im regelmäßigen Wechsel mit anderen Wahlpflichtmoduln, (WS)</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Lehrform</td>
</tr>
<tr>
<td>Spezielle (kombinatorische) Optimierungsprobleme</td>
<td>V</td>
</tr>
<tr>
<td>Übungen zu Spezielle Optimierungsprobleme</td>
<td>Ü</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>Spezielle (kombinatorische) Optimierungsprobleme</td>
<td>45</td>
</tr>
<tr>
<td>Übungen zu Spezielle Optimierungsprobleme</td>
<td>15</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Module Lineare Optimierung, Kombinatorische Optimierung</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Anhand spezieller Optimierungsprobleme sollen vertiefende theoretische Kenntnisse in dem Bereich Optimierung erworben werden, sowie Lösungsansätze kennengelernt, analysiert und implementiert werden.</td>
</tr>
</tbody>
</table>

Fortsetzung auf der Rückseite
Lehrinhalt: (exemplarische Angabe – eine Auswahl/Ergänzung ist vorzunehmen)
– Traveling Salesman Problem:
  Theorie: verschiedene Problemformulierungen, spezielle TSPs, Komplexität, Poly-
edrische Kombinatorik, ganzzahlige Optimierung
  Algorithmen: primale und duale Heuristiken, lokale Verbesserungsverfahren, Ap-
proximationsschemata, Branch-and-Bound-Verfahren, Schnittebenenverfahren
  Anwendungsbeispiele
– Knapsack-Problem:
  Theorie: verschiedene Problemformulierungen, spezielle KPs, Komplexität, dyna-
mische Optimierung, Relaxierungen, Güteschranken
  Algorithmen: Greedy-Verfahren, Approximationsschemata, pseudopolynomiale Ver-
fahren mittels Dynamischer Optimierung, Branch-and-Bound-Verfahren
  Anwendungsbeispiele
– weitere Optimierungsprobleme:
  Bin-Packing-Problem, Netzwerk-Design-Problem, Zuordnungsproblem, Transport-
problem, u.a.

Studien-/Prüfungs-
leistungen: Klausur oder Mündliche Prüfung
Medienformen: Tafel, Folien, Rechnervorführungen, Skript
Literatur: abhängig von der getroffenen Problemauswahl.
Kombinatorik

| Studiengang: | Master Angewandte Mathematik  
|             | Master Operations Research  
|             | Bachelor Angewandte Mathematik |

| Modulbezeichnung: | Kombinatorik |

| Kürzel: | |

| Untertitel: | Vorlesung Kombinatorik mit begleitenden Übungen |

| Lehrveranstaltungen: | Vorlesung Kombinatorik mit begleitenden Übungen |

| Modulverantwortliche(r): | Prof. Dr. W. Klotz |

| Dozenten: | Prof. Dr. W. Klotz u.a. |

| Sprache: | Deutsch |


| Semester: | ab 1. bzw. 6. Semester |

| Moduldauer: | 1 Semester |

| Angebotsturnus: | im regelmäßigen Wechsel mit anderen Wahlpflichtmoduln |

| Lehrformen: |

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kombinatorik</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Kombinatorik</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| Arbeitsaufwand: |

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kombinatorik</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Kombinatorik</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |

| Voraussetzungen: | Grundmodule Analysis, Lineare Algebra und diskrete Strukturen |

<table>
<thead>
<tr>
<th>Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnis klassischer Anzahlprobleme und Beherrschung verschiedener Techniken zur Anzahlbestimmung</td>
</tr>
<tr>
<td>Einsicht in kombinatorische Konfigurationen und Beherrschung ihrer Konstruktionsmethoden</td>
</tr>
</tbody>
</table>

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th><strong>Lehrinhalt:</strong></th>
<th>Prinzip von Inklusion und Exklusion, erzeugende Funktionen, Stirlingsche Zahlen, Inversionsformeln, Polyasche Theorie der Anzahlbestimmung, Möbiusfunktionen, Ramsey Theorie, Grundlagen der endlichen Geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Studien-/Prüfungsleistungen:</strong></td>
<td>Klausur oder Mündliche Prüfung</td>
</tr>
<tr>
<td><strong>Medienformen:</strong></td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>
| **Literatur:** | V. Bryant: Aspects of Combinatorics, Cambridge University Press, 1992  
                     P. Cameron: Combinatorics, Cambridge University Press, 1994  
Spieltheorie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
<th>Master Operations Research</th>
<th>Bachelor Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Spieltheorie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Volesung Spieltheorie mit begleitenden Übungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. P. Huhn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. P. Huhn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. bzw. 6. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im SS, im regelmäßigen Wechsel mit anderen Wahlpflichtmoduln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Lehrform</td>
<td>SWS</td>
<td>Gruppengr.</td>
</tr>
<tr>
<td>Spieltheorie</td>
<td>V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Spieltheorie</td>
<td>Ü</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Kontaktzeit</td>
<td>Eigenst.</td>
<td>Summe</td>
</tr>
<tr>
<td>Spieltheorie</td>
<td>45</td>
<td>90</td>
<td>135</td>
</tr>
<tr>
<td>Übungen zur Spieltheorie</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Module Wahrscheinlichkeitstheorie, Lineare Optimierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Kenntnisse der grundlegenden Ideen und Konzepte der Spieltheorie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Fähigkeit zur Formulierung und Analyse realer Situation mittels spieltheoretischer Ansätze</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fortsetzung auf der Rückseite
**Lehrinhalt:** Darstellung und Charakterisierung von Spielen, Beurteilung von Spielsituationen, Informationsgehalt und Präferenzen, Strategien, Gleichgewichte, Spielwerte und Optimierungskriterien, 2- und n-Personenspiele, endliche und unendliche Spiele, Nullsummenspiele, etc. Kooperative Spiele, Verhandlungen und Koalitionsbewertungen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

**Literatur:**
- G. Owen: Game Theory
- B. Rauhut, N. Schmitz, E.W. Zachow: Spieltheorie
- J. Wang: The Theory of Games

Weitere Literatur wird im Rahmen der jeweiligen Veranstaltung angegeben.
Seminar

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Seminar in Analysis, Operatortheorie, Numerik, Stochastik oder Optimierung</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten und Dozentinnen der Mathematik</td>
</tr>
<tr>
<td>Dozenten:</td>
<td></td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich, im regelmäßigen Wechsel</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>S</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 3

Voraussetzungen:


Lehrinhalt: Ausgabe eines Themas (wissenschaftlicher Artikel oder Auszug aus einem Lehrbuch, i.a. fremdsprachlich) aus dem jeweiligen Fachgebiet; Eigenständige Erarbeitung des Inhaltes; Ausarbeitung eines wissenschaftlichen Vortrags zum Thema; Präsentation mit Diskussion; Nachbereitung des eigenen Vortrags; schriftliche Ausarbeitung.

Studien-/Prüfungsleistungen: Vortrag und schriftliche Ausarbeitung

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Tafel, Folien/Beamer, Textverarbeitung mit Formelsatz, Diskussion im Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Studiengang: Master Operations Research

Modulbezeichnung: OR im Flugverkehr

Kürzel: AirportOR

Untertitel: Modellierung, Simulation und Optimierung im Flugverkehr

Lehrveranstaltungen: Projektgruppe zum OR im Flugverkehr

Modulverantwortliche(r): Prof. Dr. T. Hanschke, Prof. Dr. P. Huhn, Prof. Dr. M. Kolonko, Dr. M. Mederer, Dr. M. Frank

Dozenten: Prof. Dr. T. Hanschke, Prof. Dr. P. Huhn, Prof. Dr. M. Kolonko, Dr. M. Mederer, Dr. M. Frank

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtmodul im Masterstudiengang Operations Research

Semester: 3. Semester

Modulduer: 1 Semester

Angebotsturnus: im Wechsel mit anderen WP-Angeboten, im WS

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektgruppe zum OR im Flugverkehr</td>
<td>P</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektgruppe zum OR im Flugverkehr</td>
<td>60</td>
<td>210</td>
<td>270</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9

Voraussetzungen: Vertiefung Optimierung, Luftverkehrsmanagement, Module Praktische Optimierung, Angewandte stoch. Prozess I und II


Fortsetzung auf der Rückseite
Lehrinhalt:


2. Mathematische Modellierung der Fragestellung, unterschiedliche Ansätze

3. Untersuchung verschiedener Optimierungsverfahren

4. Implementierung und Simulation von Lösungen.

Einige Teile werden in Form einer Vorlesung präsentiert, andere werden von Teilnehmern und Teilnehmerinnen aus der Literatur erarbeitet und der Gruppe vorgestellt. In der Regel wird zur Bewertung der Lösungsansätze eine Implementierung vorzunehmen sein.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Schriftliche Ausarbeitung, Seminar, Studienarbeit oder Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer</td>
</tr>
</tbody>
</table>

Literatur:

- C. Reeves, Modern Heuristic Techniques for Combinatorial Optimization Problems

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
OR in der Telekommunikation

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>OR in der Telekommunikation</td>
</tr>
<tr>
<td>Kurzeln:</td>
<td>TelekomOR</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Modellierung, Simulation und Optimierung in der Telekommunikation</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Projektgruppe zum OR in der Telekommunikation</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. P. Huhn, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. T. Hanschke, Prof. Dr. P. Huhn, Prof. Dr. M. Kolonko</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum: Wahlpflichtmodul Masterstudiengang Operations Research

<table>
<thead>
<tr>
<th>Semester:</th>
<th>3. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>im Wechsel mit anderen WP-Angeboten im WS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektgruppe zum OR in der Telekommunikation</td>
<td>P</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektgruppe zum OR in der Telekommunikation</td>
<td>60</td>
<td>210</td>
<td>270</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9

Voraussetzungen: Vertiefung Optimierung, Praktische Optimierung, Angewandte stoch. Prozess I und II


Fortsetzung auf der Rückseite
Lehrinhalt:


2. Mathematische Modellierung der Fragestellung mit unterschiedlichen Ansätzen

3. Untersuchung verschiedener Optimierungsverfahren

4. Implementierung und Simulation von Lösungen.

Einige Teile werden in Form einer Vorlesung präsentiert, andere werden von Teilnehmern und Teilnehmerinnen aus der Literatur erarbeitet und der Gruppe vorgestellt. In der Regel wird zur Bewertung der Lösungsansätze eine Implementierung vorzunehmen sein.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Schriftliche Ausarbeitung, Seminar, Studienarbeit oder Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien/Beamer</td>
</tr>
</tbody>
</table>

Literatur:

- C. Reeves, Modern Heuristic Techniques for Combinatorial Optimization Problems

Weitere Literatur wird im Rahmen der Veranstaltung angegeben.
Abschlussarbeit AM

| Studiengang: | Master Angewandte Mathematik |
| Modulbezeichnung: | Abschlussarbeit AM |
| Kürzel: | MAAM-Arbeit |
| Untertitel: |
| Lehrveranstaltungen: |
| Modulverantwortliche(r): | Dozenten und Dozentinnen der Mathematik |
| Dozenten: |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum: Pflichtmodul im Masterstudiengang Angewandte Mathematik |
| Semester: | 4. Semester |
| Moduldauer: | 1 Semester |
| Angebotsturnus: |

| Lehrformen: |
| Name | Lehrform | SWS | Gruppengr. |
| MA Arbeit | - | 0 | |

| Arbeitsaufwand: |
| Name | Kontaktzeit | Eigenst. | Summe |
| MA Arbeit | 0 | 900 | 900 |

| Kreditpunkte: | 30 |
| Voraussetzungen: | Zulassungsvoraussetzung lt. Ausführungsbestimmungen: vier Module im Pflichtbereich Mathematik und insgesamt mindestens 75 ECTS aus dem Master Angewandte Mathematik |

Lernziele: Die Master-Abschlussarbeit soll zeigen, dass die oder der Studierende in der Lage ist, innerhalb von sechs Monaten ein anspruchsvolleres mathematisches Problem zu bearbeiten, die dazu geeigneten Modelle und Methoden zu entwickeln oder anzupassen und erfolgreich einzusetzen. Das Ergebnis ist in angemessener Form schriftlich darzustellen.

Lehrinhalt: Ausgabe einer Fragestellung mit geeigneter Literatur; Beratung durch die betreuenden Dozenten und Dozentinnen; Erstellung und fristgemäße Abgabe der schriftlichen Ausarbeitung.

Studien-/Prüfungsleistungen: | schriftliche Ausarbeitung |

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th><strong>Medienformen:</strong></th>
<th>Textsystem mit Formelsatz</th>
</tr>
</thead>
</table>

*Literatur:* Wird bei der Themenvergabe bekanntgegeben.
Abschlussarbeit OR

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Abschlussarbeit OR</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MAOR-Arbeit</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten und Dozentinnen der Mathematik, der Informatik und der Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Dozenten:</td>
<td></td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td></td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA Arbeit</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA Arbeit</td>
<td>0</td>
<td>900</td>
<td>900</td>
</tr>
</tbody>
</table>

Kreditpunkte: 30

Voraussetzungen: Zulassungsvoraussetzung lt. Ausführungsbestimmungen: insgesamt mindestens 75 ECTS aus dem Master Operations Research


Lehrinhalt: Ausgabe einer Fragestellung mit geeigneter Literatur; Beratung durch die betreuenden Dozenten und Dozentinnen; Erstellung und fristgemäße Abgabe der schriftlichen Ausarbeitung.

Studien-/Prüfungsleistungen: | schriftliche Ausarbeitung |

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Textsystem mit Formelsatz</th>
</tr>
</thead>
</table>

*Literatur:* Wird bei der Themenvergabe bekanntgegeben.
Informatik
Erweiterte Grundlagen der Softwaretechnik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Erweiterte Grundlagen der Softwaretechnik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Softwaretechnik II</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Andreas Rausch, Professur für Software Systems Engineering</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dozenten der Informatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>


Semester: 2. Semester

Moduldauer: 1 Semester

Angebotsturnus: jährlich im SS

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwaretechnik II</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwaretechnik II</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen:


Fortsetzung auf der Rückseite

**Studien-/Prüfungsleistungen:**
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvorleistungen: Hausübungen, Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
</table>

**Medienformen:**
- Beamer-Präsentation, Tafel, Whiteboard

**Literatur:**
- Jon Siegel: An Overview Of CORBA 3.0, Object Management Group, 2002
- Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert Nord, Judith Stafford: Documenting Software Architectures - Views and Beyond, Addison-Wesley, 2002
- Frank Buschmann, Regine Meunier, Hans Rohner, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, Volume 1: A System of Patterns, John Wiley + Sons., 1996
- weitere Literatur wird in der Vorlesung bekannt gegeben
Grundlagen der Datenbanktheorie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Datenbanktheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Datenbanken I</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>N. N. Professur für Datenbanken</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>N. N., ELAN-Import aus Göttingen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, bei Bedarf englisch, Folien-Skript in deutsch</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken I</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken I</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |
| Voraussetzungen: | Informatik I-III |


Fortsetzung auf der Rückseite
**Lehrinhalt:** Grundideen: Persistenz, Mehrbenutzerbetrieb, Anfragen an Massendaten; konzeptuelle Modellierung (ER-Modell); relationales Modell; relationale Algebra; SQL-Anfragen, -Updates und Schemaerzeugung; Transaktionen; Normalisierungstheorie

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvoreinstellungen: Hausübungen, Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel, Whiteboard</td>
</tr>
</tbody>
</table>

**Literatur:**
Erweiterte Grundlagen der Datenbanken

| Studiengang: | Master Angewandte Mathematik, Master Operations Research |
| Modulbezeichnung: | Erweiterte Grundlagen der Datenbanken |
| Kürzel: | |
| Untertitel: | |
| Lehrveranstaltungen: | Datenbanken II |
| Modulverantwortliche(r): | N. N., Professur für Datenbanken |
| Dozenten: | N. N., ELAN-Import aus Göttingen |
| Sprache: | Deutsch, bei Bedarf englisch, Folien/Skript in Deutsch |
| Semester: | ab 2. Semester |
| Moduldauer: | 1 Semester |
| Angebotsturnus: | jährlich im SS |

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken II</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken II</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen:

Lernziele: In dieser Lehrveranstaltung werden weitergehende Kenntnisse und Fähigkeiten im Bereich Datenbanken und Informationssysteme vermittelt.

Fortsetzung auf der Rückseite
Lehrinhalt: Inhalt der bisherigen Veranstaltung Semistructured Data and XML The course will first review some of these preceding (partially even historic) concepts (network database model, relational databases, object-oriented databases) and the integration of data and metadata (SchemaSQL). Then, the idea of semistructured data is introduced by showing early representatives that helped to shape the XML world (F-Logic, OEM). In the main part, XML is presented as a data model and a markup-meta-language, and the current languages of the concepts of the XML world are systematically investigated and applied: DTD, XPath, XQuery, XSLT, XLink, XML Schema, SQL/XML, RDF/OWL.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvorleistungen: Hausübungen Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Rechnervorführungen, Skript</td>
</tr>
</tbody>
</table>

Literatur:
Multiagentensysteme

| Studiengang: | Master Angewandte Mathematik, Master Operations Research |
| Modulbezeichnung: | Multiagentensysteme |
| Kürzel: |
| Untertitel: |
| Lehrveranstaltungen: | Multiagentensysteme |
| Modulverantwortliche(r): | Prof. Jürgen Dix, Professur für Theorie und Computational Intelligence |
| Dozenten: | Prof. Jürgen Dix |
| Sprache: | Deutsch (bei Bedarf Englisch), Folien Englisch |


Semester: ab 2. Semester

Moduldauber: 1 Semester

Angebotsturnus: jährlich im SS

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiagentensysteme</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiagentensysteme</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen:

Lernziele: Die Studierenden haben nach Abschluss des Moduls eine Kenntnis der wichtigsten theoretischen Grundlagen von Multiagentensystemen. Sie können die erworbenen Fähigkeiten bei der Entwicklung von Multiagentensystemen anwenden

Fortsetzung auf der Rückseite
Lehrinhalt: Basics, Techniques: Contract nets, coalition formation, coalition formation, Concept of an agent, 3 basic Architectures: Reactive, BDI, Shohams-0

Decision Making: Criteria, normalform games Von Neumanns MinMax and Nashs theorem Voting mechanisms, Arrows theorem and variants Tactical voting, Gibbard/Satterthwaite and variants Auctions, lying at Vickrey, dependent auctions Imperfect Information Games, Repeated games, bargaining

Important Techniques: Reliability of MAS: Survivability IMPACT: a particular agent system

Logic Propositional logic Modal logic LTL, CTL ATL, BDI, Model checking Dynamic logics, first order logic Con-Golog, Metatem

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvorleistungen: Hausübungen zur Vorlesung, Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel</td>
</tr>
</tbody>
</table>

Literatur:
- Weiss: Multi-Agent-Systems, MIT Press, 1999
**Data Mining**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Data Mining</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Data and Web Mining</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Barbara Hammer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Barbara Hammer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch oder Deutsch</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

<p>| Lehrformen: |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data and Web Mining</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| Arbeitsaufwand: |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data and Web Mining</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
</tr>
</thead>
</table>

*Lernziele:* Die Studierenden haben nach Abschluss des Moduls wichtige Techniken des Data Minings gelernt und einen Überblick über Anwendungsmöglichkeiten und Beschränkungen der Verfahren. Sie sind in der Lage, Verfahren konkret anzuwenden, die Algorithmen für die Gegebenheiten zu adaptieren und Ergebnisse korrekt zu interpretieren.

*Fortsetzung auf der Rückseite*

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvorleistungen: Hausübungen, Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel, Rechnerübungen</td>
</tr>
</tbody>
</table>

**Literatur:**
- Pattern Recognition and Machine Learning, Christopher Bishop, Springer, 2006
- Originalarbeiten
Selbstorganisierende Systeme

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Selbstorganisierende Systeme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Organic Computing</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Barbara Hammer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Barbara Hammer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>Semester:</td>
<td>Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Computing</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Computing</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |

| Voraussetzungen: | |

*Lernziele:* Die Studierenden lernen in dem Modul grundlegende Prinzipien der Selbstorganisation kennen. Im Vordergrund steht dabei die Modellierung selbstorganisierender Verhalten durch generelle mathematische Prinzipien, die Umsetzung in konkrete effiziente Algorithmen und die Anwendung in praktischen Beispielen (etwa der Robotik)

*Lehrinhalt:* Grundlagen selbstorganisierender Prozesse Ameisenalgorithmen Schwarmintelligenz selbstorganisierende Karten blind source separation evolutionäre Algorithmenzelluläre Automaten Anwendungen in technischen Systemen

| Studien-/Prüfungsleistungen: | Prüfungsvorleistungen: Hausübungen, Modulprüfung: Abschlussklausur oder mündliche Prüfung |

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Beamer-Präsentation, Tafel, Rechnertübung</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Literatur:</strong></td>
<td></td>
</tr>
<tr>
<td>– Dorigo, Stützle, Ant Colony Optimization, MIT, 2004</td>
<td></td>
</tr>
<tr>
<td>– Dorigo, Swarm intelligence, Ofxord, 1999</td>
<td></td>
</tr>
<tr>
<td>– Michalewicz, Fogel, How to solve it, Modern Heuristics, Springer, 2004</td>
<td></td>
</tr>
<tr>
<td>– Originalarbeiten</td>
<td></td>
</tr>
</tbody>
</table>
**Grundlagen der Graphischen Datenverarbeitung**

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Graphischen Datenverarbeitung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Geometry Processing</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Kai Hormann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Kai Hormann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, bei Bedarf englisch</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry Processing</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>Geometry Processing</td>
<td>45</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
</tr>
</tbody>
</table>

| Kreditpunkte:         | 6                                                   |
| Voraussetzungen:      |                                                    |


*Fortsetzung auf der Rückseite*

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel, Whiteboard</td>
</tr>
</tbody>
</table>

**Literatur:**
- Hoschek/Lasser (2002): Grundlagen der geometrischen Datenverarbeitung
- Piegl/Tiller (1997): The NURBS Book
Erweiterte Grundlagen der Graphischen Datenverarbeitung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Erweiterte Grundlagen der Graphischen Datenverarbeitung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Subdivision</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Kai Hormann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Kai Hormann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, bei Bedarf englisch</td>
</tr>
<tr>
<td>Semester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen:


Fortsetzung auf der Rückseite
**Lehrinhalt:** Approximierende und interpolierende Subdivisionsverfahren Konvergenzkriterien Stetigkeitsanalyse Berechnung der Grenz-Kurven und -Flächen Zusammenhang zu B-Splines und Box Splines Spektralanalyse an irregulären Vertizes

**Studien-/Prüfungsleistungen:**
Prüfungsvorleistungen: Hausübungen Modulprüfung: Abschlussklausur oder mündliche Prüfung

**Medienformen:**
Beamer-Präsentation, Tafel, Whiteboard

**Literatur:**
Integrierte Anwendungssysteme

| Studiengang: | Master Angewandte Mathematik, Master Operations Research |
| Modulbezeichnung: | Integrierte Anwendungssysteme |
| Kürzel: | |
| Untertitel: | |
| Lehrveranstaltungen: | Grundlagen Integrierter Anwendungssysteme |
| Modulverantwortliche(r): | Prof. Dr. J. P. Müller |
| Dozenten: | Prof. Dr. J. P. Müller |
| Sprache: | Deutsch, bei Bedarf englisch, Folien-Skript in Deutsch oder Englisch |


Semester: ab 1. Semester

Moduldauer: 1 Semester

Angebotsturnus: zweijährlich im WS

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen Integrierter Anwendungssysteme</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen Integrierter Anwendungssysteme</td>
<td>30</td>
<td>45</td>
<td>75</td>
</tr>
<tr>
<td>Übung</td>
<td>30</td>
<td>75</td>
<td>105</td>
</tr>
</tbody>
</table>

Kreditpunkte: 6

Voraussetzungen: Modul Grundlagen der Wirtschaftsinformatik

Fortsetzung auf der Rückseite

**Lehrinhalt:** Grundbegriffe und Einordnung Einteilung und Integration von Anwendungssystemen Geschäftsprozesse zur Integration von AWS Basistechnologien und Architektur Integrierter Anwendungssysteme am Beispiel SAP R-3 Vorgehensmodelle der Entwicklung Methoden des Customizing von Anwendungssystemen Typen von Anwendungssystemen (branchenspezifisch, branchenneutral, Querschnitts- und Führungssysteme) Anwendung der theoretischen Inhalte in einem Praktikum unter Verwendung ausgewählter Methoden und Werkzeuge (z.Zt. SAP R-3, JCO, NetWeaver)

**Studien-/Prüfungsleistungen:**
- Prüfungsvorleistungen: Hausarbeit + Testat (Praktikum) Modulprüfung: Mündliche Prüfung oder Klausur

**Medienformen:**
- Beamer-Präsentation, Tafel, Whiteboard Praktikum am Rechner

**Literatur:**
- Obligatorisches Modul für Schwerpunkt Wirtschaftsinformatik
**Electronic Commerce/Electronic Business**

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Master Angewandte Mathematik, Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td>Electronic Commerce/Electronic Business</td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Lehrveranstaltungen:</strong></td>
<td>Electronic Commerce/Electronic Business</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. Jörg Müller; Professur für Wirtschaftsinformatik</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. Jörg Müller</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch, bei Bedarf englisch</td>
</tr>
</tbody>
</table>

**Zuordnung zum Curriculum:** Wahlpflichtmodul in den Masterstudiengängen Angewandte Mathematik und Operations Research.

**Semester:** ab 2. Semester

**Modulduer:** 1 Semester

**Angebotsturnus:** zweijährlich im SS

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Commerce/Electronic Business</td>
<td>V</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Commerce/Electronic Business</td>
<td>45</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 6

**Voraussetzungen:**


Fortsetzung auf der Rückseite
**Lehrinhalt:** Definitionen und Gegenstand E-Commerce / E-Business Methodische und
Technologische Basis Grundlagen sicherer Geschäftstransaktionen Web Service Technolo-
gien Vom Web Service zum Geschäftsprozess: Koordination und Komposition automa-
tisierbarer Geschäftsprozesse
Anwendungsbereiche des E-Commerce/E-Business, z.B. Elektronische Produkte und
Dienstleistungen E-Procurement E-Marketing E-Contracting E-Distribution und Logistik
Elektronische Zahlungsverfahren Customer Relationship Management
Strategische Aspekte des E-Commerce/E-Business

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvorleistungen: Hausübungen Modulprüfung: Abschlussklausur oder mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer-Präsentation, Tafel, Übungen theoretisch und am Rechner</td>
</tr>
</tbody>
</table>

**Literatur:**
Grundlagen der Strömungsmechanik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Strömungsmechanik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Strömi I</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Grundlagen der Strömungsmechanik mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. G. Brenner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. habil. G. Brenner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum: Wahlpflichtmodul Technisches Vertiefungsfach im Masterstudienengang Angewandte Mathematik

Semester: 1. Semester
Moduldauer: 1 Semester
Angebotsturnus: jährlich im WS

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppenr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Strömungsmechanik</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Strömungsmechanik</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Kreditpunkte: 5

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Strömungsmechanik</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Strömungsmechanik</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>


Fortsetzung auf der Rückseite
Lehrinhalt:
1. Einführung, Bedeutung der Strömungsmechanik in Natur und Technik
2. Hydrostatik/Aerostatik: Hydrostatischer Druck, Druckverteilung in ruhenden Flüssigkeiten und Gasen, Druckmessung, Kapillarwirkung und Oberflächenspannung
4. Grundgleichungen idealer Fluide: Erhaltungsgleichungen für Masse, Impuls und Energie in reibungsfreien Fluiden
5. Gasdynamik: Strömungen mit Dichteänderungen, Strömung in der Lavaldüse (isentrope Strömungen), Strömungen mit Verdichtungsstoßen (Nicht isentrope Strömungen)
6. Strömungen viskoser Fluide: Einführung des Reibungsbegriffes in Fluiden, Physikalische Interpretation der Viskosität
7. Dimensionsanalyse und Ähnlichkeitstheorie: Maßsysteme und Dimensionen, PI-Theorem, Dimensionsbetrachtung, Übertragbarkeit Experiment-Realität am Beispiel Windkanalmessung
8. Einführung in die Grenzschichttheorie: Charakterisierung, Kenngrößen der Grenzschicht, Grenzschichtgleichungen, Ablösung und Beeinflussung von Grenzschichtströmungen
9. Eigenschaften turbulenter Strömungen: Erscheinungsformen der Turbulenz, Schwan kungsbewegung und mittlere Bewegung, Reynoldsspannungen, Beispiele wandgebundener und freier Turbulenz

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skript</td>
</tr>
</tbody>
</table>

Literatur:
- Spurk, Strömungslehre — Einführung in die Theorie der Strömungen, Springer Verlag.
- Zierep, Grundzüge der Strömungslehre, G. Braun Verlag.
- Douglas, Gasiorek, Swaffield, Fluid Mechanics, Pearson Education.
Strömungsmechanik Vertiefung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Strömungsmechanik Vertiefung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Strömi II</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Stömungsmechanik Vertiefung mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. G. Brenner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. habil. G. Brenner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Technisches Vertiefungsfach im Masterstudienengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Strömungsmechanik Vertiefung</td>
</tr>
<tr>
<td>Übungen zu Strömungsmechanik Vertiefung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Strömungsmechanik Vertiefung</td>
</tr>
<tr>
<td>Übungen zu Strömungsmechanik Vertiefung</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 5 |

Voraussetzungen: Modul Grundlagen der Strömungsmechanik


Fortsetzung auf der Rückseite
Lehrinhalt:
3. Materialgleichungen für reale Fluide: Newtonsche Fluide, Nicht-Newtonsche Fluide, Viskoelastische Fluide, Einführung in die Rheologie, Rheometrie

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skript</td>
</tr>
</tbody>
</table>

Literatur:
- Spurk, Strömungslehre — Einführung in die Theorie der Strömungen, Springer Verlag.
- Böhme, Strömungsmechanik Nicht-Newtonscher Fluide, Teubner.
## Numerische Strömungsmechanik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Numerische Strömungsmechanik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Numerische Strömungsmechanik mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. G. Brenner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. habil. G. Brenner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Technisches Vertiefungsfach im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Strömungsmechanik</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Numerische Strömungsmechanik</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Strömungsmechanik</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Numerische Strömungsmechanik</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

### Kreditpunkte: 5

### Voraussetzungen:

*Fortsetzung auf der Rückseite*

**Lehrinhalt:**
- Einführung: Erhaltungsgleichungen der Kontinuumsmechanik, Klassifizierung aus mathematischer Sicht, Rand- und Anfangsbedingungen
- Finite Differenzen Methode: Prinzip der FDM, Genauigkeitsfragen, Anwendung zur Lösung einer linearen skalaren Gleichung
- Eigenschaften von iterativen Algorithmen: Stabilität, Konvergenz, Konsistenz (Satz von Lax), Konservativität, Beschränktheit
- Berechnungsverfahren für elliptische Probleme: Möglichkeiten der Druck-Geschwindigkeitskopplung, SIMPLE Verfahren und Varianten, versetzte und nicht versetzte Gitter
- Simulation turbulenter Strömungen: Möglichkeiten der Simulation / Modellierung der Turbulenz, Schließungsannahmen, Transportmodelle für Turbulenzgrößen, Wandmodellierung
- Anwendungsaspekte: Gittergenerierung (Preprocessing), Einbindung in andere CA Techniken
- Multigrid
- Parallelverarbeitung und Hochleistungsrechnen
- Visualisierung/Postprocessing von numerischen Daten

**Studien-/Prüfungsleistungen:** Mündliche Prüfung

**Medienformen:** Tafel, Folien, Skript, Programmmodule

**Literatur:**
Numerische Akustik

| Studiengang: | Master Angewandte Mathematik |
| Modulbezeichnung: | Numerische Akustik |
| Kürzel: | |
| Untertitel: | |
| Lehrveranstaltungen: | Vorlesung Numerische Akustik |
| Modulverantwortliche(r): | Prof. Dr. Sabine Langer |
| Dozenten: | Prof. Dr. Sabine Langer |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum: | Wahlpflichtmodul Technisches Vertiefungsfach im Masterstudiengang Angewandte Mathematik |
| Semester: | 3. Semester |
| Moduldauer: | 1 Semester |
| Angebotsturnus: | jährlich im WS |

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Akustik</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Akustik</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 3

Voraussetzungen:

Lernziele: Sensibilisierung für die Bedeutung des Lärmschutzes und für die Notwendigkeit der Berücksichtigung von akustischen Belangen in einer frühen Phase des Entwurfs, Identifizierung von numerischen Verfahren als Mittel insbesondere für die frühe Entwurfsphase, Vermittlung von Grundlagenwissen zu gängigen numerischen Verfahren in der Akustik, Vor- und Nachteile der einzelnen Verfahren und ihre Eignung in Abhängigkeit von der Problemstellung

Lehrinhalt:
Akustische Grundlagen
Numerische Verfahren in der Akustik
(Finite Elemente Methode, Randelementmethode, Geometrische Akustik, Statistische Energie Analyse)

Studien-/Prüfungsleistungen: Mündliche Prüfung

Fortsetzung auf der Rückseite
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Tafel, Folien, Skript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Skript</td>
</tr>
</tbody>
</table>
Kontinuumsmechanik

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Kontinuumsmechanik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Kontinuumsmechanik mit Gruppenübungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. G. Brenner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>N.N.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Technisches Vertiefungsfach im Master-studiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontinuumsmechanik</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Kontinuumsmechanik</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontinuumsmechanik</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Kontinuumsmechanik</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 5 |

| Voraussetzungen: | |

Lernziele: Verständnis für die wesentlichen Grundgesetze und Methoden der Mechanik erweitern; Basis für Verständnis der Werkstoffmechanik; Umsetzung von abstrakten Inhalten der Mathematik für konkrete Probleme im Bereich der Elasto- und Plastomechanik. Das Modul vermittelt überwiegend Fach- und Methodenkompetenz, in geringerem Maß auch System- und Sozialkompetenz.

Fortsetzung auf der Rückseite
Lehrinhalt:
0. Einführung
1. Grundlagen des Tensorkalküls
2. Kinematik des Kontinuums
2.1. Deformationgradiententensor, Links- und Rechtsstrecktensoren; Volumen- und Flächentransformationen
2.2. Verzerrungstensoren; Kompatibilitätsbedingungen der klassischen Elastizitätstheorie
2.3. Geschwindigkeit, Beschleunigung; substantielle Ableitungen; Theorie der Raumkurven
2.4. Relativbewegungen, Jaumannsche Ableitungen; Prinzip der Objektivität
2.5. Deformationsgeschwindigkeit, Rotationsgeschwindigkeit; natürliche Dehnungsinkremente
2.6. Transporttheoreme
3. Spannungstensoren und zugeordnete Verzerrungstensoren
4. Grundgesetze der Kontinuumsmechanik
4.1. Die Kontinuitätsgleichung
4.2. Der Impulssatz
4.3. Der Impulsmomentensatz; Symmetrie des Cauchy-Eulerschen Spannungstensors
5. Stoffgesetze der Elasto- und Plastomechanik
5.1. Elastisches Materialverhalten
5.2. Linearviskoelastisches Materialverhalten
5.3. Plastisches Materialverhalten

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Skript</td>
</tr>
</tbody>
</table>

Literatur:
Digitale Regelungssysteme

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Digitale Regelungssysteme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Digitale Regelungssysteme mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Nachfolge Prof. Dr.-Ing. Königorsi (zur Zeit Dr.-Ing. Sonnenberg)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Technisches Vertiefungsfach im Masterstudienang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitale Regelungssysteme</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen Digitale Regelungssysteme</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitale Regelungssysteme</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen Digitale Regelungssysteme</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Kreditpunkte: 5

Voraussetzungen: Modul Regelungstechnik I


Fortsetzung auf der Rückseite
**Lehrinhalt:**

1. Einführung: Zeitdiskrete Systeme und Beispiele für Abtastvorgänge
2. Prinzipieller Aufbau eines Abtastregelkreises
4. z-Transformation: Definition, Rechenregeln, z-Übertragungsfunktion, Grenzwertsätze der z-Transformation
5. Beschreibung von Abtastregelungen im z-Bereich: Abtastregelungen mit zeitkontinuierlichem Regler, Abtastregelungen mit zeitdiskretem Regler, Diskreter Standardregelkreis
6. Stabilität zeitdiskreter Systeme: Definition, Stabilitätskriterien im Zeitbereich und im z-Bereich, Algebraische Stabilitätskriterien
8. Synthese von Abtastregelungen im z-Bereich: Entwurf diskreter Kompensationsregler, Entwurf auf endliche Einstellzeit (Deadbeat-Regler)

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Folien, Skript, Übungsaufgaben, Tafel</td>
</tr>
</tbody>
</table>

**Literatur:**

- Föllinger, O.: Regelungstechnik
- Philips, Charles L.; Nagle, Hubert T.: Digital control systems, analysis and design
- Unbehauen, H.: Regelungstechnik II
### Messtechnik II

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Messtechnik II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MT II</td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Berührungslose Messtechnik und Funksensorik</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Messtechnik II mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

**Zuordnung zum Curriculum:** Wahlpflichtmodul Technisches Vertiefungsfach im Master-Studiengang Angewandte Mathematik

| Semester: | 2. Semester |
| Moduldauer: | 1 Semester |
| Angebotsturnus: | jährlich im SS |

**Lehrformen:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messtechnik II</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Messtechnik II</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Arbeitsaufwand:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messtechnik II</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu Messtechnik II</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 5

**Voraussetzungen:**

*Fortsetzung auf der Rückseite*

**Lehrinhalt:**
1. Einführung: Übersicht über Anwendung der Berührungslosen Messtechnik und Funksensorik, Grundprinzipien Wellenbasierten Sensorsysteme und Abbildungsverfahren
2. Ultraschallsensorik: Ultraschallphysik, Ultraschall-Abbildungsverfahren und -Systeme (für Anwendungen in der Medizin, Industrieautomation, Robotik und Werkstoffprüfung)
3. Mikrowellensensorik: Grundlagen der Ausbreitung, Beugung und Reflexion von Mikrowellen, Mikrowellensensorverfahren und Systeme, Materialcharakterisierung, Radar (z.B. Kfz-Radar, Industrieradar etc.)
4. Rekonstruktive Abbildungsverfahren: Holographie, Tomographie, Verfahren mit synthetischer Apertur / SAR
5. Optische Messtechnik: Grundlagen (Quellen, Detektoren), Verfahren zur Bestimmung der Laterale Geometrie (2D), Systeme für Tiefeninformation (Triangulation, Interferenz), elektro-optische 3D-Kameraprinzipien, Systeme zur Bestimmung von Materialeigenschaften
6. Funk-Sensorik: Grundprinzipien, Bluetooth, Zig-Bee, autarke Sensoren, Sensornetze
7. Funkbasierte Ortungssysteme: Ortungsprinzipien, Anwendungen der funkbasierten Ortung

**Studien-/Prüfungsleistungen:**
Mündliche Prüfung

**Medienformen:**
Folien, Übungsaufgaben inkl. Lösungen als Textdokumente, alles übers WEB abrufbar, Tafel, Praktisch Arbeiten mit Laborsystemen, Signalverarbeitung mit Matlab

**Literatur:**
Systemtheorie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Systemtheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Einführung in die Theorie nichtlinearer Systeme</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Systemtheorie mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Nachfolger von Prof. Konigorski (vorübergehend Dr. Jörg Sonnenberg)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul Technisches Vertiefungsfach im Masterstudien­gang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System­theorie</td>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen zu System­theorie</td>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>System­theorie</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Übungen zu System­theorie</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Kreditpunkte: 5

Voraussetzungen: Modul Regelungstechnik I

Fortsetzung auf der Rückseite

**Lehrinhalt:**
1. Dynamische Systeme
   Zeitinvariante dynamische Systeme, Beispiele: Depensationsmodell für den Fischfang, Schlitten-Pendel-System, Temperaturregelung
2. Ruhelagen dynamischer Systeme
3. Stabilität einer Ruhelage
   Stabilitätsdefinition, Koordinatentransformation, Die direkte Methode von Ljapunow: Stabilitätskriterien, Linearisierung um einen Arbeitspunkt, Entwurf strukturumschaltender Regelungen
4. Absolute Stabilität nichtlinearer Regelkreise
   Definition der absoluten Stabilität, Das Popow-Kriterium, Sektortransformation, Die Popow-Ortskurve, Das Kreiskriterium
5. Hyperstabilität
6. Fuzzy-Regelungen
7. Neuronale Netze

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Folien, Übungsaufgaben, Tafel</td>
</tr>
</tbody>
</table>

**Literatur:**
- Föllinger, O.: Nichtlineare Regelungen, Bd I und II
- Föllinger, O.: Regelungstechnik
- Kiendl, H.: Fuzzy Control, methodenorientiert
- Schuster, H.G.: Deterministisches Chaos
- Unbehauen, H.: Regelungstechnik II
- Wunsch, G.: Geschichte der Systemtheorie
Betriebswirtschaftslehre
Operations Management

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulebezeichnung:</td>
<td>Operations Management</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Operations Management/Logistik, Operations Management/Produktionsplanung, Vorlesungen mit begleitenden Übungen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Schwindt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Schwindt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>1. und 2. Semester</td>
</tr>
<tr>
<td>Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich, beginnend im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Management I / Produktionsplanung</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Operations Management II / Logistik</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Management I / Produktionsplanung</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Operations Management II / Logistik</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |
| Voraussetzungen: | Modul Grundlagen der Betriebswirtschaftslehre |

Lernziele: Operations Management I. Befähigung zur Anwendung von Modellen und Methoden der operativen Produktionsplanung, Einführung in Konzepte der Qualitätssicherung in der Produktion
Operations Management II. Befähigung zur Anwendung von Modellen und Methoden der operativen Logistikplanung in Distribution und Transport

Fortsetzung auf der Rückseite
Lehrinhalt: Operations Management I. Grundlagen der Produktionsplanung, verbrauchsgesteuerte Materialbedarfsplanung, programmgesteuerte Materialbedarfsplanung, Bestellmengen- und Losgrößenplanung, Ablaufplanung speziellen Produktionsssegmente (Einzel- und Kleinserienfertigung, Serienfertigung, Massenfertigung, verfahrenstechnische Chargenproduktion), Qualitätssicherung
Operations Management II. Grundlagen der Logistikplanung, Minimalkosten-Fluss- und Umladeprobleme, Mehrgüter-Flussprobleme, Flussprobleme mit Randbedingungen, Timetabling in Speditionsnetzen, Briefträgerprobleme, Handlungsreisendenprobleme, Tourenplanungsprobleme, Beladungsplanung, Lagerbetrieb, Kommissionierung

Studien-/Prüfungsleistungen: jeweils Klausur oder Mündliche Prüfung

Medienformen: Tafel, Overhead-Projektor

Literatur:
- Operations Management I
- Operations Management II
  - Vahrenkamp, R. (2003), Quantitative Logistik für das Supply Chain Management. Oldenbourg, München

222
# Projektplanung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Projektplanung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Projektmanagement und Projektplanung I mit begleitenden Übungen, Vorlesung Projektmanagement und Projektplanung II</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. J. Zimmermann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. J. Zimmermann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. und 3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich beginnend im SS</td>
</tr>
</tbody>
</table>

| Lehrformen:          |
|----------------------|------------------|---|---|
| Name                  | Lehrform | SWS | Gruppengr. |
| Projektmanagement und Projektplanung I | V+Ü   | 3  | 0  |
| Projektmanagement und Projektplanung II | V     | 2  | 0  |

| Arbeitsaufwand:      |
|----------------------|------------------|---|---|
| Name                  | Kontaktzeit | Eigenst. | Summe |
| Projektmanagement und Projektplanung I | 45       | 45      | 90   |
| Projektmanagement und Projektplanung II | 30       | 60      | 90   |

| Kreditpunkte:         | 6                |

| Voraussetzungen:      |


*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Projektmanagement; Anwendungssoftware zur Projektplanung (MS Project); Netzplantechnik; Termin-, Ressourcen- und Kostenplanung; Anwendungen der ressourcenbeschränkten Projektplanung in der Prozessindustrie. Einführung in die Projektplanung bei knappen Ressourcen, Modellierung erneuerbarer Ressourcen, exakte und heuristische Verfahren zur Lösung von ressourcenbeschränkten Projektplanungsproblemen, Anwendungen der ressourcenbeschränkten Projektplanung in der Prozessindustrie

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>jeweils Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafelvortrag und Beamer</td>
</tr>
</tbody>
</table>

**Literatur:**
## Logistik

### Studiengang:

Master Angewandte Mathematik

### Modulbezeichnung:

Logistik

### Kürzel:


### Untertitel:


### Lehrveranstaltungen:

Supply Chain Management, Modellierung und Planung von Logistiksystemen, Vorlesungen mit begleitenden Übungen

### Modulverantwortliche(r):

Prof. Dr. Schwindt

### Dozenten:

Prof. Dr. Schwindt

### Sprache:

Deutsch

### Zuordnung zum Curriculum:

Wahlpflichtmodul im Masterstudiengang Angewandte Mathematik

### Semester:

3 Semester

### Moduldauer:

1 Semester

### Angebotsturnus:

jährlich, im WS

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Chain Management</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Modellierung und Planung von Logistiksystemen</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Chain Management</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Modellierung und Planung von Logistiksystemen</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

6

### Voraussetzungen:

Modul Grundlagen der Betriebswirtschaftslehre, Unternehmensforschung I, II bzw. Kombinatorische Optimierung, Lineare Optimierung

### Lernziele:

Supply Chain Management. Überblick über Planungsaufgaben in Wertschöpfungsnetzwerken, Kenntnis der Architektur und ausgewählter Module von Anwendungs- systemen zum Supply-Chain-Management, Unterscheidung prinzipieller Formen der gemeinschaftlichen Planung

Einführung in den modellgestützten Entwurf betrieblicher Logistiksysteme in Beschaffung, Produktion und Distribution

*Fortsetzung auf der Rückseite*
**Lehrinhalt:** Supply Chain Management. Grundlagen des Supply-Chain-Management, EDV-gestützte Ansätze zur Produktionsplanung, Advanced-Planning-Systeme, Strategische Netzwerkplanung, Masterplanung, Verfügbarkeitsprüfung, Gemeinschaftliche Planung, Implementationen von Advanced-Planning-Systemen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>jeweils Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Overhead-Projektor</td>
</tr>
</tbody>
</table>

**Literatur:**
- **Supply Chain Management**
  - Chopa, S., Meindl, P. (2003), Supply Chain Management, Prentice Hall, Englewood Cliffs
  - Corsten, H., Gössinger, R. (2001), Einführung in das Supply Chain Management, Oldenbourg, München
- **Modellierung und Planung von Logistiksystemen**
### Marktforschung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Marktforschung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Marktforschung I mit begleitenden Übungen, Vorlesung Marktforschung II</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Angewandte Mathematik</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. und 3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich beginnend im SS</td>
</tr>
</tbody>
</table>

#### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marktforschung I</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Marktforschung II</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marktforschung I</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Marktforschung II</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

#### Kreditpunkte:

6

#### Voraussetzungen:

#### Lernziele:

#### Lehrinhalt:
Funktionen der Marktforschung, Der Marktforschungsprozess, Möglichkeiten und Probleme der Sekundärforschung, Auswahlverfahren der Primärforschung, Erhebungsverfahren der Primärforschung (inkl. Panel und Experiment) Grundlagen der Marktforschung; Marktforschungsprozess; Operationalisierung; Messung und Skalierung; Datenaufbereitung; Datenanalyse; Multivariate statistische Verfahren; Anwendungen

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>jeweils Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>

**Literatur:**
### Produktion und Logistik

<table>
<thead>
<tr>
<th><strong>Studiengang:</strong></th>
<th>Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modulbezeichnung:</strong></td>
<td>Produktion und Logistik</td>
</tr>
<tr>
<td><strong>Kürzel:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Untertitel:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Lehrveranstaltungen:</strong></td>
<td>Operations Management/Logistik, Operations Management/Produktionsplanung, Supply Chain Management, Vorlesungen mit begleitenden Übungen</td>
</tr>
<tr>
<td><strong>Modulverantwortliche(r):</strong></td>
<td>Prof. Dr. Schwindt</td>
</tr>
<tr>
<td><strong>Dozenten:</strong></td>
<td>Prof. Dr. Schwindt</td>
</tr>
<tr>
<td><strong>Sprache:</strong></td>
<td>Deutsch</td>
</tr>
<tr>
<td><strong>Zuordnung zum Curriculum:</strong></td>
<td>Pflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td><strong>Semester:</strong></td>
<td>1. und 2. Semester</td>
</tr>
<tr>
<td><strong>Moduldauer:</strong></td>
<td>2 Semester</td>
</tr>
<tr>
<td><strong>Angebotsturnus:</strong></td>
<td>jährlich, beginnend im WS</td>
</tr>
</tbody>
</table>

#### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Management I / Produktionsplanung</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Operations Management II / Logistik</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Supply Chain Management</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Management I / Produktionsplanung</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Operations Management II / Logistik</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Supply Chain Management</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

**Kreditpunkte:** 9

**Voraussetzungen:** Modul Grundlagen der Betriebswirtschaftslehre

Fortsetzung auf der Rückseite
**Lernziele:** Operations Management I. Befähigung zur Anwendung von Modellen und Methoden der operativen Produktionsplanung, Einführung in Konzepte der Qualitätssicherung in der Produktion
Operations Management II. Befähigung zur Anwendung von Modellen und Methoden der operativen Logistikplanung in Distribution und Transport
Supply Chain Management. Überblick über Planungsaufgaben in Wertschöpfungsnetzwerken, Kenntnis der Architektur und ausgewählter Module von Anwendungssystemen zum Supply-Chain-Management, Unterscheidung prinzipieller Formen der gemeinschaftlichen Planung

**Lehrinhalt:** Operations Management I. Grundlagen der Produktionsplanung, verbrauchsgesteuerte Materialbedarfsplanung, programmgesteuerte Materialbedarfsplanung, Bestellmengen- und Losgrößenplanung, Ablaufplanung speziellen Produktionssegmente (Einzel- und Kleinserienfertigung, Serienfertigung, Massenfertigung, verfahrenstechnische Chargenproduktion), Qualitätssicherung
Operations Management II. Grundlagen der Logistikplanung, Minimalkosten-Fluss- und Umladeprobleme, Mehrgüter-Flussprobleme, Flussprobleme mit Randbedingungen, Timetabling in Speditionsnetzen, Briefträgerprobleme, Handlungsreisendenprobleme, Tourenplanungsprobleme, Beladungsplanung, Lagerbetrieb, Kommissionierung

**Studien-/Prüfungsleistungen:** jeweils Klausur oder Mündliche Prüfung

**Medienformen:** Tafel, Overhead-Projektor

*Fortsetzung auf der Rückseite*
Literatur:

- Operations Management I

- Operations Management II
  - Vahrenkamp, R. (2003), Quantitative Logistik für das Supply Chain Management. Oldenbourg, München

- Supply Chain Management
  - Chopra, S., Meindl, P. (2003), Supply Chain Management, Prentice Hall, Englewood Cliffs
  - Corsten, H., Gössinger, R. (2001), Einführung in das Supply Chain Management, Oldenbourg, München
Projektplanung und Marktforschung

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Projektplanung und Marktforschung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td>Vorlesung Projektmanagement und Projektplanung I mit begleitenden Übungen, Vorlesung Marktforschung I</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. J. Zimmermann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. J. Zimmermann, PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektmanagement und Projektplanung I</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Marktforschung I</td>
<td>V+Ü</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektmanagement und Projektplanung I</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Marktforschung I</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 6 |
| Voraussetzungen: | |


**Lehrinhalt:** Projektmanagement; Anwendungsssoftware zur Projektplanung (MS Project); Netzplantechnik; Termin-, Ressourcen- und Kostenplanung; Anwendungen der ressourcenbeschränkten Projektplanung in der Prozessindustrie. Funktionen der Marktforschung, Der Marktforschungsprozess, Möglichkeiten und Probleme der Sekundärforschung, Auswahlverfahren der Primärforschung, Erhebungsverfahren der Primärforschung (inkl. Panel und Experiment)

*Fortsetzung auf der Rückseite*
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>jeweils Klausur oder Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>
Projektmanagement und -planung II

| Studiengang: | Master Operations Research |
| Modulbezeichnung: | Projektmanagement und -planung II |
| Kürzel: | |
| Untertitel: | |
| Lehrveranstaltungen: | Projektmanagement und -planung II |
| Modulverantwortliche(r): | Prof. Dr. J. Zimmermann |
| Dozenten: | Prof. Dr. J. Zimmermann |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum: | Wahlpflichtmodul im Masterstudiengang Operations Research |
| Semester: | 3. Semester |
| Moduldauer: | 1 Semester |
| Angebotsturnus: | jährlich im WS |

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektmanagement und -planung II</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektmanagement und -planung II</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 3 |
| Voraussetzungen: | Projektmanagement und Projektplanung I |

*Lernziele:* Befähigung zur Formulierung praktischer Problemstellungen als ressourcenbeschränkte Projektplanungsprobleme mit Hilfe erneuerbarer Ressourcen sowie zur Entwicklung geeigneter Lösungsansätze

*Lehrinhalt:* Einführung in die Projektplanung bei knappen Ressourcen, Modellierung erneuerbarer Ressourcen, exakte und heuristische Verfahren zur Lösung von ressourcenbeschränkten Projektplanungsproblemen, Anwendungen der ressourcenbeschränkten Projektplanung in der Prozessindustrie

*Studien-/Prüfungsleistungen:* Klausur

*Medienformen:* Tafelvortrag und Beamer

Fortsetzung auf der Rückseite
Literatur:


## Marktforschung II

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Marktforschung II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Vorlesung Marktforschung II</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>PD Dr. Winfried Steiner</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>jährlich im WS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marktforschung II</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marktforschung II</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

### Kreditpunkte:

|            | 3         |

### Voraussetzungen:

|             | Marktforschung I |

### Lernziele:

Grundlagen, Aufgaben und Probleme der Marktforschung; Vermittlung von Wissen über Datenanalyseverfahren; Vermittlung von Fähigkeiten, empirische Daten in Marktforschungsstudien zu erheben, zu verarbeiten und die Ergebnisse zu interpretieren.

### Lehrinhalt:

Grundlagen der Marktforschung; Marktforschungsprozess; Operationalisierung; Messung und Skalierung; Datenaufbereitung; Datenanalyse; Multivariate statistische Verfahren; Anwendungen

### Studien-/Prüfungsleistungen:

Klausur

### Medienformen:

Tafelvortrag und Beamer
Literatur:

Modellierung und Planung von Logistiksystemen

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Modellierung und Planung von Logistiksystemen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Modellierung und Planung von Logistiksystemen</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. C. Schwindt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. C. Schwindt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>zweijährlich im WS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellierung und Planung von Logistiksystemen</td>
<td>V + Ü</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellierung und Planung von Logistiksystemen</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

Kreditpunkte: 3

Voraussetzungen: Unternehmensforschung I, II bzw. Kombinatorische Optimierung, Lineare Optimierung

Lernziele: Einführung in den modellgestützten Entwurf betrieblicher Logistiksysteme in Beschaffung, Produktion und Distribution

Lehrinhalt: Logistiksysteme und deren Modellierung, Betriebliche Standortplanung, Layoutplanung, Konfiguration von Produktionssystemen, Konfiguration von Förder- und Lagersystemen

Studien-/Prüfungsleistungen: Klausur oder Mündliche Prüfung

Medienformen: Tafel, Overhead-Projektor

Fortsetzung auf der Rückseite
Literatur:
Anwendung Operations Management

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Anwendung Operations Management</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Seminar, Rechnerpraktikum</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ch. Schwindt, Prof. Dr. J. Zimmermann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Ch. Schwindt, Prof. Dr. J. Zimmermann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul im Masterstudiengang Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>zweijährlich im WS</td>
</tr>
</tbody>
</table>

Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar zum Operations Management</td>
<td>S</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Rechnerpraktikum zum Operations Management</td>
<td>P</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar zum Operations Management</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Rechnerpraktikum zum Operations Management</td>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

Kreditpunkte: 9

Voraussetzungen: im Bachelor-Studiengang: Kombinatorische Optimierung, Lineare Optimierung, Einführung in die Programmierung; im Masterstudiengang: Operations Management I, II

Lernziele: Befähigung zur softwaretechnischen Umsetzung von Modellen und Methoden des Operations Management in der industriellen Praxis, zur interdisziplinären Projektarbeit in Kleingruppen, und zur selbständigen schriftlichen und mündlichen Präsentation von Ergebnissen

Fortsetzung auf der Rückseite
### Lehrinhalt:
Ausgewählte Fragestellungen des Operations Management in der industriellen Praxis, bspw. Produktionsplanung in der Fertigungs- und Prozessindustrie, Projektplanung, Timetabling

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur oder Mündliche Prüfung, Vortrag, Ausarbeitung, Quellcode und Software-Dokumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Rechnervorführungen</td>
</tr>
</tbody>
</table>

### Literatur:

242
### Produktionsplanung in der Prozessindustrie

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik/Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Produktionsplanung in der Prozessindustrie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Produktionsplanung in der Prozessindustrie</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. C. Schwindt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. C. Schwindt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul in den Masterstudiengängen Angewandte Mathematik und Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>zweijährlich im WS</td>
</tr>
</tbody>
</table>

### Lehrformen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktionsplanung in der Prozessindustrie</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

### Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktionsplanung in der Prozessindustrie</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

### Kreditpunkte: 3

### Voraussetzungen:
Produktion, Unternehmensforschung I, II bzw. Kombinatorische Optimierung, Lineare Optimierung

### Lernziele:
Überblick über Aufgaben und Methoden der strategischen, taktischen und operativen Planung in der verfahrenstechnischen Produktion, Einführung in Softwaresysteme zur modellgestützten Planung

### Lehrinhalt:
Grundlagen der Produktionsplanung in der Prozessindustrie, Modellierung und Lösung von Problemen der Prozesssynthese, der Kampagnenplanung, der Anlagenbelegungsplanung bei Chargenproduktion und der Anlagenbelegungsplanung bei Massen- und Sortenproduktion

*Fortsetzung auf der Rückseite*
**Studien-/Prüfungsleistungen:**
Klausur oder Mündliche Prüfung

**Medienformen:**
Tafel, Overhead-Projektor

**Literatur:**
Operations Management für die Dienstleistungsproduktion

<table>
<thead>
<tr>
<th>Studiengang:</th>
<th>Master Angewandte Mathematik/Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Operations Management für die Dienstleistungsproduktion</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Operations Management für die Dienstleistungsproduktion</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. C. Schwindt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. C. Schwindt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Wahlpflichtmodul in den Masterstudiengängen Angewandte Mathematik und Operations Research</td>
</tr>
<tr>
<td>Semester:</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus:</td>
<td>zweijährlich im SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Lehrform</th>
<th>SWS</th>
<th>Gruppengr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Management für die Dienstleistungsproduktion</td>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>Ü</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Kontaktzeit</th>
<th>Eigenst.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Management für die Dienstleistungsproduktion</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Übung</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

| Kreditpunkte:         | 3           |
| Voraussetzungen:     | Unternehmensforschung I, II bzw. Kombinatorische Optimierung, Lineare Optimierung |

Lernziele: Einordnung der Dienstleistungsproduktion in die Produktionswirtschaft, Übersicht über Planungsprobleme und -methoden für den Entwurf und die Produktion von Dienstleistungen

Fortsetzung auf der Rückseite
**Lehrinhalt:** Konstitutive Eigenschaften von Dienstleistungen, Grundlagen der Dienstleistungsproduktion, Messung der Effizienz der Dienstleistungsproduktion, Design von Dienstleistungen, Planung von Standorten und Netzwerken, Strategische Kapazitätsplanung, Revenue Management, Projektplanung, Personaleinsatzplanung, Timetabling

**Studien-/Prüfungsleistungen:** Klausur oder Mündliche Prüfung

**Medienformen:** Tafel, Overhead-Projektor

**Literatur:**