Inhaltsverzeichnis
Common compulsory subjects of all areas of study ... 3
Module 1: Communication Skills .. 4
Module 2: Advanced Reservoir Mechanics ... 5
Module 3: Advanced Production and Well Planning ... 7
Module 11: Project Management .. 9
Module 13: Group Project ... 10
Module 14: M.Sc. Thesis + Presentation .. 12
Compulsory subjects of Reservoir Management area of study .. 13
Module 4: Data Acquisition and Evaluation ... 14
Module 5: Reservoir Modeling and Simulation ... 16
Module 6: Enhanced Hydrocarbon Recovery ... 18
Module 10 a: Economics and Law ... 19
Module 12: Seminar .. 21
Compulsory subjects of Drilling & Production area of study ... 22
Module 7: Advanced Drilling and Completion ... 23
Module 8: Directional Drilling and Logging ... 25
Module 9: Production .. 27
Module 10 b: Management, Economics and Law ... 29
Module 12: Seminar .. 31
Compulsory subjects of Deep Geothermal Systems area of study .. 32
Module 4: Data Acquisition and Evaluation ... 33
Module 7: Advanced Drilling and Completion ... 35
Module 10 a: Economics and Law ... 37
Module 12: Seminar .. 39
Module 14: Geothermal Systems ... 40
Compulsory optional subjects of Reservoir Management area of study 42
Module 15.1: Petrophysics ... 43
Module 15.2: Geostatistics .. 44
Module 15.3: Rock Physics .. 45
Module 15.4: Geoinformation Systems ... 47
Module 16.1: Data Interpretation .. 48
Module 16.2: Model Validation ... 49
Module 16.3: Reservoir Modeling ... 50
Module 17.1: Natural Gas Recovery ... 51
Module 17.2: Natural Gas Storage ... 52
Module 17.3: Enhanced Production ... 53
Module 18.1: Energy Law .. 54
Module 18.2: Health, Safety and Environmental Management .. 55
Compulsory optional subjects of Drilling & Production area of study 56
Module 19.1: Energy Law .. 57
Module 19.2: Materials Engineering ... 58
Module 19.3: Fluid Mechanics ... 59
Module 19.4: Offshore Production and Structures ... 60
Module 19.5: Numerical Reservoir Simulation .. 61
Module 19.6: Natural Gas Storage ... 62
Module 19.7: Geological Modeling .. 63
Module 19.8: Applied Well Test Analysis ... 64
Module 19.9: Enhanced Oil Recovery ... 65
Module 19.10: Geoinformation Systems .. 66
Compulsory optional subjects of Deep Geothermal Systems area of study 66
Module 20.1: Energy Law .. 67
Module 20.2: Fluid Mechanics ... 68
Module 20.3: Numerical Reservoir Simulation .. 69
Module 20.4: Geological Modeling .. 70
Module 20.5: Hydrogeology for the Geothermal Energy Production 71
Module 20.6: Geothermal Geology .. 72
Module 20.7: Fossil & Renewable Energy .. 74
Module 20.8: Health, Safety and Environmental Management .. 75
Module 20.9: Geoinformation Systems .. 76
Common compulsory subjects of all areas of study
Module 1: Communication Skills

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 1
Name of the module: Communication Skills
Courses:
- Interpersonal Skills
- Technical Writing
Term: 1-2
Person responsible for the module: Prof. Oppelt
Lecturers: Prof. Kraus, Mrs. Schulze-Bentrop
Language: English
Course type: Compulsory subjects (PF) of the Reservoir Management, Drilling & Production and Deep Geothermal Systems areas of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact hours/Self-study</td>
<td>CP</td>
</tr>
<tr>
<td>S 6111 Interpersonal Skills</td>
<td>2V</td>
<td>28/62</td>
<td>3</td>
</tr>
<tr>
<td>W 9009 Technical Writing</td>
<td>2Ü</td>
<td>28/32</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>2V+2Ü</td>
<td>56/94</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites.
Learning objectives / Skills: Strengthening and improvement of the academic and professional writing skills and ability of interpersonal communication/ Ability of students to write scientific and technical reports and to present results as well as to work in international interdisciplinary teams will be developed

Course outline:
- Interpersonal Skills:
 - Understanding yourself
 - Building Trust: Emotional Intelligence at Work
 - Developing Successful Interactions: Empowerment and the Involvement of Others, Conflict Management, Team Facilitation Skills
 - Creating Learning Conversations: Providing Effective Performance Feedback, Listening and Diversity Issues

- Technical Writing:
 - Various writing exercises
 - Working with authentic written texts, which will improve writing style, coherency, vocabulary, and grammar.

Course assignments/ form of examination: Partial examination.
- Interpersonal Skills:
 - Report and Presentation/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score is required to pass the written exam.
- Technical Writing:
 - Homework Assignments/ Term paper
 - The module grade is evaluated as average grade from the both partial grades weighted by the credit point number.

Media:
- Powerpoint, White Board, Flipchart
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course

Literature:
- Lecture notes
- Authentic text materials
- Training assignments

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 2: Advanced Reservoir Mechanics

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>2</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Advanced Reservoir Mechanics</td>
</tr>
</tbody>
</table>
| Courses: | Thermodynamics and Phase Behavior of Hydrocarbons
| | Rock Mechanics II |
| Term: | 1 |
| Person responsible for the module: | Prof. Leonhard Ganzer |
| Lecturers: | Prof. Ganzer, Prof. Hou |
| Language: | English |
| Course type | Compulsory subjects (PF) of the Reservoir Management, Drilling & Production and Deep Geothermal Systems areas of study |

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6104 Thermodynamics and Phase Behavior of Hydrocarbons</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 6234 Rock Mechanics II</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4V+2Ü</td>
<td>84/216</td>
<td>10</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Ability to apply mass conservation and transfer laws as well as mathematical methods to describe phase behavior of hydrocarbons and mechanical behavior of reservoir rocks for solution of reservoir engineering problems should be developed. Students will become capable to acquire and evaluate physical properties of reservoir fluids and rocks needed for reservoir characterization and simulation and will develop a professional expertise in the application methods for solution of real reservoir engineering problems.

Course outline: Thermodynamics and Phase Behavior of Hydrocarbons

- Basic Thermodynamics
- Physical Properties of Real Gases / Gaseous Systems
- Physical Properties of Liquid Systems
- Chemistry and Properties of Organic Components
- Two Phase Systems; Numerical Treatment of Real Systems
- Chemistry of Brines, Equilibria with Water Phases
- Interfacial Energy

Rock Mechanics II

- Poroelastic theory
- Borehole stability
- Sand production prediction
- Reservoir engineering applications

Course assignments/ form of examination: Homework Assignments, Reports and presentation/ Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.

Media:

- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:

<table>
<thead>
<tr>
<th>Rock Mechanics II</th>
</tr>
</thead>
</table>

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 3: Advanced Production and Well Planning

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 3
Name of the module: Advanced Production and Well Planning
Courses: Advanced Production, Well Planning
Term: 1
Person responsible for the module: Prof. Oppelt
Lecturers: Dr.-Ing. Perozo Baptista, Dr. Jürgen Schamp
Language: English
Course type: Compulsory subjects (PF) of the Reservoir Management, Drilling & Production and Deep Geothermal Systems areas of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h] Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6131 Advanced Production</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W 6105 Well Planning</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4V+2U</td>
<td>84/216</td>
<td>10</td>
<td>55</td>
<td>35</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

| Prerequisites for attending: | No special prerequisites
| Learning objectives / Skills: | Advanced Production:
Acquisition of profound knowledge in production engineering and development the ability to apply it to handle practical engineering issues like improvement of productivity and dimensioning of sub-surface and surface production facilities.
/Students will became able to theoretically grasp and to practically handle sub-surface and surface petroleum production systems
Well Planning:
Acquisition of profound knowledge in drilling engineering and the ability to apply it to the well planning/ Skills of well planning based on the profound knowledge and ability to meet requirements and options

| Course outline: | Advanced Production:
• Introduction to integrated production systems
• Review of reservoir inflow characterization and modeling tools
• Review of multiphase flow modeling in wellbores, risers and flowlines
• Choke valves
• Surface facilities
• Review of production optimization techniques
• Diagnosis of systems performance
• Production allocation
• Linking the reservoir, the near-wellbore, the wellbore and the surface facilities
• Planning short-, medium- and long-term optimization of field management

Well Planning:
• Fundamentals of Well Planning
• Trajectory Planning
• Casing and Drillstring Design
• Cementing
• BOP
• Examples and Case Studies

| Course assignments/ form of examination: | Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the partial grades weighted by the credit point number

| Media: | Multimedia lecturing tools
• PowerPoint presentation software and white board
• Hard copy of lecture notes to be provided at the beginning of the course
• A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

<table>
<thead>
<tr>
<th>Literature: Advanced Production:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Well Planning</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants are requested to register for the attendance with the course directory at the Stud.IP</td>
</tr>
</tbody>
</table>
Module 11: Project Management

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 11
Name of the module: Project Management
Courses: Integrated Project Management and Development
Term: 3
Person responsible for the module: Prof. Oppelt
Lecturers: Prof. Reinicke
Language: English
Course type: Compulsory subjects (PF) of the Reservoir Management, Drilling & Production and Deep Geothermal Systems areas of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>W6117 Integrated Project Management and Development</td>
<td>4V</td>
<td>56/124</td>
<td>CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOK</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special requirements

Learning objectives / Skills: MSc candidates should develop the ability to carry out integrated project development studies/ Skills in the application of modern techniques of engineering, systematic and creative methods of working in an international and interdisciplinary environment will be developed and established at an advanced level.

Course outline:
- System analysis: linking the reservoir, the near-wellbore, the wellbore and the surface facilities
- Planning short-, medium and long-term optimisation of field management
- Fundamentals of integrated project management
- Economics (Discounted Cash Flow, Elements, Indicators, Use)
- Data (e.g. for Development Studies: Geophysical, Geological, Well, Test, Performance Data)
- Data acquisition, QCing and integration (G&G, petrophysical, reservoir, well and surface facilities data)
- Running production forecasts and estimating reserves
- Case studies
- Application of supporting Software

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory.
- Video records of lectures are available with the Stud.IP course directory

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 13: Group Project

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 13
Name of the module: Group Project
Courses: Group Project
Term: 3
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Ganzer (responsible for the RM area of study), Prof. Oppelt (responsible for the DP area of study), Designated faculty and research staff members (concomitant)
Language: English
Course type: Compulsory subjects (PF) of the Reservoir Management, Drilling & Production and Deep Geothermal Systems areas of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6171 Group Project</td>
<td>6U</td>
<td>84/276</td>
<td>CP 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FK 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MK 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SK 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOK 25</td>
</tr>
</tbody>
</table>

Prerequisites for attending:
For the RM area of study at least 47 CP to achieve in the Modules 1, 2, 3, 4, 5, and 10a.
For the DP area of study at least 48 CP to achieve in the Modules 1, 2, 3, 7, 8, 9 and 10b.
For the DG area of study at least 51 CP to achieve in the Modules 1, 2, 3, 4, 7, 10a, 21
Admission requirements must be completed.

Learning objectives / Skills:
Consolidation of the acquired knowledge and preparation for common operational procedures of the petroleum industry by means of application of the acquired advanced knowledge to development of a solution of a real problem of the petroleum industry to be performed as interdisciplinary team work. Advanced professional expertise in the field of petroleum engineering will be established through the application of modern techniques of engineering, systematic and creative methods of working in an international and interdisciplinary environment.

Course outline:
Preparation of an integrated field development plan on the basis of real/realistic field data, spanning - if possible:
- the planning cycle from seismic surveying to reservoir description and characterization,
- reserves evaluation,
- production forecasting,
- evaluations of health, safety and environmental impact,
- well planning,
- field development,
- IOR, production,
- marketing and economic evaluations

Course assignments/ form of examination:
Group project report + Presentation/ The overall grade of the group project is evaluated as weighted average affected by 40% of the report grade, 40% of the presentation grade and 20% of the team work grade.

Media:
- 3 hard copies of the group project report (to submit to the group project coordinator in due time)
- MS PowerPoint presentation
- Data CD containing soft (pdf) copies of the group project report and the presentation to submit to the group project coordinator at the project end.

Literature:
- ITE Guidelines on the preparation of technical reports and principles of scientific writing.
- Technical reports on the group project subjects supplied by the group project sponsors.
- Special literature related to the group project issues should be collected from the open sources by the group project teams.
- Additional data required for the project work should be identified and acquired in cooperation with the group project sponsors and coordinators by the group project team.

Additional information:
Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 14: M.Sc. Thesis + Presentation

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 14
Name of the module: M.Sc. Thesis + Colloquium
Courses: M.Sc. Thesis + Colloquium
Term: 4
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Ganzer (responsible for the RM area of study), Prof. Oppelt (responsible for the DP area of study), Designated faculty and scientific staff members (concomitant)
Language: English
Course: Compulsory subjects (PF) of the Reservoir Management, Drilling & Production and Deep Geothermal Systems of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
<td>16 Ab</td>
<td>40/800</td>
<td>28</td>
<td>70</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: More than 80 CP must be collected and all the admission requirements completed.

Learning objectives / Skills: The MSc candidates should acquire profound professional knowledge in the field of petroleum engineering and be able to resolve complex engineering problems by using of common scientific methods of petroleum engineering/ The MSc candidates have to develop skills to present and to defend the results of their studies.

Course outline: A problem assigned for the MSc thesis must be suited to proof the individual's ability to address a practical problem independently and in depth within of a regular time of 5 Months

Course assignments/ form of examination: Individual assignment to an engineering or scientific problem in the field of petroleum engineering and elaboration of master thesis/ The MSc candidate must present and defend the master thesis in colloquium in presence of at least one of two designated examiners. The overall MSc thesis grade is to evaluate as weighted average affected by 90 % of the written thesis grade and 10 % of the presentation and discussion grade.

Media: • 3 hard copies of the master thesis (to be submitted to the exam office not later than 1 week prior to the colloquium) • MS PowerPoint presentation • Data CD containing soft (pdf) copies of the master thesis and the presentation

Literature: Assessment of relevant literature sources should be carried out by the MSc candidate as part of the master thesis

Additional information: The MSc candidates are asked to agree the appointment for the colloquium with the secretary office in advance.
Compulsory subjects of Reservoir Management area of study
Module 4: Data Acquisition and Evaluation

Degree Programme: Petroleum Engineering
Module number: 4
Name of the module: Data Acquisition and Evaluation
Courses: Applied Well Test Analysis
Well Logging II
Term: 2
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Ostrowski, Prof. Weller
Language: English
Course type: Compulsory subjects (PF) of the Reservoir Management area of study

Courses	HPW	Contact hours/Self-study	CP	FK	MK	SK	SOK
S 6109 Applied Well Test Analysis | 2V+10 | 42/108 | 5 | 60 | 40 | | |
S 4023 Well Logging II | 2V+1U | 42/108 | 5 | 60 | 40 | | |
Total | 4V+2U | 84/216 | 10 | 60 | 40 | | |

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: The MSc candidates should acquire the knowledge in the origination, validation, interpretation and uncertainty of engineering and geo-scientific data as well as the ability to handle, to interpolate and to extrapolate it. Students develop skills to acquire and to evaluate data required for reservoir characterization and simulation studies.

Course outline: Applied Well Test Analysis
- Objectives of Well Testing
- Downhole and Surface Equipment
- Well Test Principles, Reservoir Models, Inner & Outer Boundary Conditions
- Single Well Test Analysis: Drawdown, Build-Up (DST) Pulse Test, Minifrac Testing, Layered Reservoir, Vertical Interference and Horizontal Well Test
- Multiple Well Test Analyses: Interference Test, Pulse Interference Test; Gas Well Test Analysis Interpretation Methodology.

Well Logging II (cased hole logging)
- Introduction
- Radiometric methods
- Acoustic methods
- Electrical methods

Course assignments/ form of examination: Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score number is required to pass the written exam. The module grade is evaluated as average grade from both partial grades weighted by the credit points number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional well test analysis and interpretation software

Literature:
2. Earlougher R. C.: Advances in Well Test Analysis, Monograph Series, SPE, Dallas 1977

Well Logging II

Additional information: Participants are requested to register for the attendance with the course directory
Module 5: Reservoir Modeling and Simulation

Degree Programme: Petroleum Engineering
Module number: 5
Name of the module: Reservoir Modelling and Simulation
Courses: Geological Modeling
Numerical Reservoir Simulation
Term: 1-2
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Groß, Dipl.-Ing. Schatzmann, Prof. Ganzer, Prof. Bremeier,
Language: English
Course type: Compulsory subjects (PF) of the Reservoir Management area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 4820 Geological Modeling</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td>5</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>S 6102 Numerical Reservoir Simulation</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td>5</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4V+2Ü</td>
<td>84/216</td>
<td>10</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the field of setting up of geological and dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. Ability of setting up and evaluate geological and dynamic reservoir simulation models as well as to approach the professional solution of real reservoir modelling and simulation problems on advanced methodical and systematical way.

Course outline:
Geological Modeling:
a) Theoretical part: Interpretation and basics to reconstruct deposition areas (depositional systems and facies models) with regards to set up 3D geological models:
- Principles of generation of 3-D geological models
- Sedimentary facies
- Facial model
- Facial sequences and stratigraphy, Sedimentary structures, Well logging and facies
- Depositional environments: Terrestrial environments;
- Fluvial systems
- Marginal marines: Deltaic systems
- Example cases relevant to the petroleum geology
b) Practical part: Introduction to Petrel software package (well correlation, static geological model)

Numerical Reservoir Simulation:
- History and classification of reservoir simulators
- Review of fluid properties for simulation
- Rock properties and saturation functions
- General purpose formulation and discretization methods used for black-oil and EOS compositional simulators
- Gridding - structured and unstructured gridding approaches, Cartesian, corner point and Voronoi grids
- Modelling structural elements in simulation
- Representing wells in the reservoir simulation model
- Compositional reservoir simulation
- Simulation of fractured reservoirs
- Upgridding and upscaling
- History matching

Course assignments/ form of examination: Continuous assessment and report, Project work/ Partial examination. Written (90 min) or oral exam (30-40 min). The mark of the course Geological Modelling consists of a) theoretical part -> final exam (written) and b) practical part -> continuous assessment and report.
The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Computer aided exercises using the application of the commercial reservoir modeling software PETREL (Schlumberger), Matlab and CMG
- Hard copy of lecture notes to be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
- Video records of lectures is available with the course directory on the Stud.IP

Literature:

Geological Modelling:

Numerical Reservoir Simulation:

Additional information:
Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 6: Enhanced Hydrocarbon Recovery

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>6</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Enhanced Hydrocarbon Recovery</td>
</tr>
<tr>
<td>Courses:</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>Term:</td>
<td>3</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory subjects (PF) of the Reservoir Management area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact hours/Self-study</td>
<td>CP</td>
</tr>
<tr>
<td>W 6103 Enhanced Oil Recovery</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the analysis and computation methods of the processes and mechanisms of the oil recovery, production and storage. Skills in the application of the fundamentals of material and phase behavior of hydrocarbons will be consolidated and established on an advanced level.

Course outline:
- Basics of Waterflooding;
- Chemical Flooding;
- Gas Flooding;
- Steam Flooding;
- Well Treatment

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional software

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 10 a: Economics and Law

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 10 a
Name of the module: Management, Economics and Law
Courses: Energy Law I, Planning and Budgeting
Term: 2-3
Person responsible for the module: Prof. Oppelt
Lecturers: Prof. Wolkewitz, Dr. Schäfer
Language: English
Course type: Compulsory subjects (PF) of the Reservoir Management area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h] Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6168 Energy Law I</td>
<td>1V</td>
<td>14/46</td>
<td>2</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W 6114 Planning and Budgeting</td>
<td>2V</td>
<td>28/62</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3V</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
Acquisition of knowledge of basics of public law and methods of business administration related to oil and gas activities including the main elements of the legal framework, planning tools and decision models / Students develop skills to understand and apply the elements of legal framework, planning tools and decision models

Course outline:
Energy Law I:
- Public law as basis for oil and gas activities – a general introduction
- Typical legal systems for upstream oil and gas activities such as Licences/Concessions, Production Sharing Agreements and Service Contracts
- Fiscal regimes for oil and gas activities
- Environmental law
- The legal framework of mid- and downstream oil and gas activities
Planning and Budgeting
- Basic Concepts and Definitions
- On Planning
- Vertical (Value Chain), Horizontal and Mixed Types of Business
- Types of Investment
- Evaluation of Prospects and Investments
- Search for and Screening of Investment Opportunities
- Establishing an Investment Portfolio
- From Portfolio to Budget Proposals
- The Capital Budget Decision
- Operational Budget and Realization
- Strategic Investment Plan
- Follow-up and Controlling

Course assignments/ form of examination: Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:
3. Respective texts of relevant laws and related documents that are provided in
the Stud.IP
4. Scripts on selected topics that are provided in the Stud.IP

Planning and Budgeting

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 12: Seminar

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 12
Name of the module: Seminar
Courses: Advanced Reservoir Topics
Term: 2
Person responsible for the module: Prof. Ganzer
Lecturers: All faculty and scientific staff members in the field of reservoir engineering
Language: English
Course type: Compulsory (PF) subjects of the Reservoir Management area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact hours/Self-study</td>
<td>CP</td>
</tr>
<tr>
<td>S 6101 Advanced Reservoir Topics</td>
<td>2S</td>
<td>28/92</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites for attending:
No special requirements

Learning objectives / Skills:
Development the ability to apply theoretical knowledge and state-of-the-art methods and technology for the individual problem solving in the field of petroleum engineering/ Strengthening of skills to report and to present results to an audience of peers

Course outline:
Students work on assigned special topics, report and present results obtained via individual efforts within a regular time of 6-7 weeks.

Course assignments/ form of examination:
Soft (pdf) copies of the seminar report, poster and presentation to be uploaded to the Stud.IP seminar directory in due time/ Seminar report, poster, presentation to an audience of peers, faculty and scientific staff members and discussion. The overall seminar grade is evaluated as weighted average affected by 40% of the report grade, 40% of the presentation grade, 10% of the poster grade and 10% of the moderation grade.

Media:
- DIN A3 Poster to be posted at a pin-board
- MS PowerPoint presentation
- White board

Literature:
Key literature sources should be provided by the supervisor. Assessment of further relevant literature sources should be carried out by the candidate as part of seminar study

Additional information:
Participants are requested to register for the attendance with the seminar directory at the Stud.IP
Compulsory subjects of Drilling & Production area of study
Module 7: Advanced Drilling and Completion

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>7</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Advanced Drilling and Completion</td>
</tr>
</tbody>
</table>
| Courses: | Advanced Drilling Technology
 | Completion and Workover |
| Term: | 1-2 |
| Person responsible for the module: | Prof. Oppelt |
| Lecturers: | Prof. Thonhauser, Dr. Prohaska, Prof. Teodoriu, Dr. Bello |
| Language: | English |
| Course type: | Compulsory subjects (PF) of the Drilling&Production area of study |

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6122 Advanced Drilling Technology</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td></td>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S 6121 Completion and Workover</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td></td>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4V+2Ü</td>
<td>84/216</td>
<td></td>
<td>10</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending:
No special prerequisites

Learning objectives / Skills:
- Acquisition of profound knowledge in drilling engineering and the ability to apply it in the field of wellbore planning. Comprehension of advanced modern drilling technologies as well as merits and risks of special drilling technology to develop petroleum reservoirs efficiently.
- Acquisition of special knowledge in the drilling, workover and completion technology to meet requirements of wellbore deliverability, safety and integrity. Skills of well planning based on the profound knowledge and ability to meet requirements and options will be extended to the advanced level and consolidated.

Course outline:
Advanced Drilling Technology:
- Drilling concepts
- Well design procedure
- Drilling optimization
- Drilling performance analysis
- Drillstring dynamics
- Drilling problems
- HP/HT wells, horizontal and extended reach wells, multilaterals
- Under balanced drilling
- New developments in drilling operations
- Offshore drilling
- Blow out
- Case studies

Completion and Workover:
- Completion objectives (definition, considerations, types)
- Mechanical aspects of well testing
- Completion fluids and perforation
- Tubing string design
- Packer and downhole tools
- Flow control
- Data acquisition & intelligent completion
- Workover objectives & workover operations
- Workover rigs & tools
- Workover equipment (wire line, snubbing unit, coiled tubing)
- Completion & workover design & execution

Course assignments/ form of examination:
Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the Credit point number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board

23
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:

Advanced Drilling Technology:

Completion and Workover:

Sonstiges:

Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 8: Directional Drilling and Logging

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 8
Name of the module: Directional Drilling and Logging
Courses:
- Directional Drilling
- Well Logging II
Term: 2
Person responsible for the module: Prof. Oppelt
Lecturers: Prof. Oppelt, Prof. Weller
Language: English
Course type: Compulsory subjects (PF) of the Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6125 Directional Drilling</td>
<td>2V</td>
<td>28/92</td>
<td>4</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S 4023 Well Logging II</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4V+1U</td>
<td>70/200</td>
<td>9</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
- Comprehension of principles of this specialized drilling technology as well as to evaluate merits and risks of it to be able to make efficient use of it in developing reservoirs
- Knowledge of logging methods in cased holes and interpretation

Course outline:
Directional Drilling:
- Directional Drilling (Fundamentals, Planning and Design)
- Downhole Motors
- Directional Survey Methods
- BHAs for Well Steering
- Geosteering Methods
- Economic Aspects of Directional Drilling

Well Logging II:
- Fundamentals of geophysical well logging methods
- History – goals – technical equipment
- Radiometric methods
- Acoustic borehole measurements
- Electrical methods

Course assignments / form of examination:
Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the Credit point number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional software

Literature:
Directional Drilling:

Well Logging II

Additional information:
Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 9: Production

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 9
Name of the module: Production
Courses: Advanced Hydrocarbon Conditioning and Processing I
 Enhanced Production
Term: 2
Person responsible for the module: Prof. Oppelt
Lecturers: Dipl.-Ing. Waldvogel, Dr. Lungwitz
Language: English
Course type: Compulsory subjects (PF) of the Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6110 Advanced Hydrocarbon Conditioning and</td>
<td>2V</td>
<td>28/62</td>
<td></td>
<td>3</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 6169 Enhanced Production</td>
<td>2V</td>
<td>42/78</td>
<td></td>
<td>4</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4V</td>
<td>70/140</td>
<td></td>
<td>7</td>
<td>55</td>
<td>35</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites
Learning objectives / Skills: Acquisition of knowledge of techniques and design requirements for the conditioning & processing of oil & gas as well as methodologies and technologies to enhance hydrocarbon production
Course outline:
Advanced Hydrocarbon Conditioning and Processing I:
- Oil & Gas Processing & Equipment
- Process Simulation
- Separation & Oil Treating Facilities
- Heat Transfer and Facilities
- Pumps, Compressors & Diverters
- Refrigeration Systems in Gas Processing
- Design of Gas Dehydration Facilities
- Advances Sour Gas Processing and Sulphur Recovery
- Operation of Surface Facilities
- Maintenance of Surface Facilities
- Safety, Environment and Human Factors in Design and Operations
Enhanced Production:
- Advanced artificial lift and gas well deliquification
- Multiphase pumps and wet gas compressors
- Subsea boosting
- Well Stimulation
- Real-time flow monitoring and control
- Production logging

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional software

Literature:
Advanced Hydrocarbon Conditioning and Processing I:
1. GPSA engineering data book 13th edition
Enhanced Production:
2. Authentic training materials of the Schlumberger Co.

Additional information: Participants are requested to register for the attendance with the course directory
Module 10 b: Management, Economics and Law

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 10 b
Name of the module: Management, Economics and Law
Courses:
- Energy Law I
- Planning and Budgeting
- Health, Safety and Environmental Management
Term: 2-3
Person responsible for the module: Prof. Oppelt
Lecturers: Prof. Wolkewitz, Dr. Schäfer, Dipl.-Ing. Söntgerath
Language: English
Course type: Compulsory subjects (PF) of the Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6168 Energy Law I</td>
<td>1V</td>
<td>14/46</td>
<td>2</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W 6114 Planning and Budgeting</td>
<td>2V</td>
<td>28/62</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W 6135 Health, Safety and Environmental Management</td>
<td>1V</td>
<td>14/46</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Summe</td>
<td>4V</td>
<td>56/154</td>
<td>7</td>
<td>45</td>
<td>35</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
Acquisition of knowledge of basics of public law, methods of business administration, health safety and environment issues related to oil and gas activities including the main elements of the legal framework, planning tools and decision models / Students develop skills to understand and apply the elements of legal framework, planning tools and decision models

Course outline:

Energy Law I
- Public law as basis for oil and gas activities – a general introduction
- Typical legal systems for upstream oil and gas activities such as Licenses/Concessions, Production Sharing Agreements and Service Contracts
- Fiscal regimes for oil and gas activities
- Environmental law
- The legal framework of mid- and downstream oil and gas activities

Planning and Budgeting
- Basic Concepts and Definitions
- On Planning
- Vertical (Value Chain), Horizontal and Mixed Types of Business
- Types of Investment
- Evaluation of Prospects and Investments
- Search for and Screening of Investment Opportunities
- Establishing an Investment Portfolio
- From Portfolio to Budget Proposals
- The Capital Budget Decision
- Operational Budget and Realization
- Strategic Investment Plan
- Follow-up and Controlling

Health, Safety and Environmental Management
- Organization of Safety and Loss Management
- Risk and its Management
- Machinery and Equipment Safety
- Kyoto Protocol and beyond
- Clear Air for Europe (CAFE)
- Dangerous Substances
- Waste and Water Management
- Offshore Regulations
- Audit - a new tool?
- Biodiversity - who cares?

Course assignments/ form of examination: Homework assignments/Partial examination by disciplines. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score is required to pass the
written exam. The module grade will be evaluated as average from the partial grades weighted by the credit points number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:

Energy Law I
3. Respective texts of relevant laws and related documents that are provided in the Stud.IP
4. Scripts on selected topics that are provided in the Stud.IP

Planning and Budgeting

Health, Safety and Environmental Management
- Lecture notes
- Handouts and authentic materials based on the EU and German national health, environmental and occupational protection laws

Additional information:
Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 12: Seminar

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 12
Name of the module: Seminar
Courses: Advanced Drilling & Production Topics
Term: 2
Person responsible for the module: Prof. Oppelt
Lecturers: All faculty and scientific staff members in the field of drilling and production engineering
Language: English
Course type: Compulsory subjects (PF) of the Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6120 Advanced Drilling & Production Topics</td>
<td>2S</td>
<td>28/92</td>
<td>4</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special requirements

Learning objectives / Skills: Development the ability to apply theoretical knowledge and state-of-the-art methods and technology for the individual problem solving in the field of petroleum engineering/ Strengthening of skills to report and to present results to an audience of peers

Course outline: Students work on assigned special topics, report and present results obtained via individual efforts within a regular time of 6-7 weeks.

Course assignments/ form of examination: Soft (pdf) copies of the seminar report, poster and presentation to be uploaded to the Stud.IP seminar directory in due time/ Seminar report, poster, presentation to an audience of peers, faculty and scientific staff members and discussion. The overall seminar grade is evaluated as weighted average affected by 40% of the report grade, 40% of the presentation grade and 10% of the poster grade and 10% of the moderation grade.

Media: • DIN A3 Poster to be posted at a pin-board
• MS PowerPoint presentation
• White board

Literature: Key literature sources should be provided by the supervisor. Assessment of further relevant literature sources should be carried out by the candidate as part of seminar study

Additional information: Participants are requested to register for the attendance with the seminar directory at the Stud.IP
Compulsory subjects of Deep Geothermal Systems area of study
Module 4: Data Acquisition and Evaluation

Degree Programme: Petroleum Engineering
Module number: 4
Name of the module: Data Acquisition and Evaluation
Courses: Applied Well Test Analysis, Well Logging II
Term: 2
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Ostrowski, Prof. Weller
Language: English
Course type: Compulsory subjects (PF) of the Deep Geothermal Systems area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h] Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6109 Applied Well Test Analysis</td>
<td>2V+10</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 4023 Well Logging II</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4V+2U</td>
<td>84/216</td>
<td>10</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of knowledge in the origination, validation, interpretation and uncertainty of engineering and geo-scientific data as well as the ability to handle, to interpolate and to extrapolate it. Students develop skills to acquire and to evaluate data required for reservoir characterization and simulation studies.

Course outline: Applied Well Test Analysis
- Objectives of Well Testing
- Downhole and Surface Equipment
- Well Test Principles, Reservoir Models, Inner & Outer Boundary Conditions
- Single Well Test Analysis: Drawdown, Build-Up (DST) Pulse Test, Minifrac Testing, Layered Reservoir, Vertical Interference and Horizontal Well Test
- Multiple Well Test Analyses: Interference Test, Pulse Interference Test; Gas Well Test Analysis Interpretation Methodology.

Well Logging II (cased hole logging)
- Introduction
- Radiometric methods
- Acoustic methods
- Electrical methods

Course assignments/ form of examination: Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional well test analysis and interpretation software

Literature:
2. Earlougher R. C.: Advances in Well Test Analysis, Monograph Series, SPE, Dallas 1977

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 7: Advanced Drilling and Completion

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>7</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Advanced Drilling and Completion</td>
</tr>
<tr>
<td>Courses:</td>
<td>Advanced Drilling Technology</td>
</tr>
<tr>
<td></td>
<td>Completion and Workover</td>
</tr>
<tr>
<td>Term:</td>
<td>1-2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Oppelt</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Thonhauser, Dr. Prohaska, Prof. Teodoriu, Dr. Bello</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory subjects (PF) of the Deep Geothermal Systems area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6122 Advanced Drilling Technology</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td></td>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S 6121 Completion and Workover</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td></td>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4V+2Ü</td>
<td>84/216</td>
<td></td>
<td>10</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
- Acquisition of profound knowledge in drilling engineering and the ability to apply it in the field of wellbore planning. Comprehension of advanced modern drilling technologies as well as merits and risks of special drilling technology to develop petroleum reservoirs efficiently
- Acquisition of special knowledge in the drilling, workover and completion technology to meet requirements of wellbore deliverability, safety and integrity /Skills of well planning based on the profound knowledge and ability to meet requirements and options will be extended to the advanced level and consolidated

Course outline:

Advanced Drilling Technology:
- Drilling concepts
- Well design procedure
- Drilling optimization
- Drilling performance analysis
- Drillstring dynamics
- Drilling problems
- HP/HT wells, horizontal and extended reach wells, multilaterals
- Under balanced drilling
- New developments in drilling operations
- Offshore drilling
- Blow out
- Case studies

Completion and Workover:
- Completion objectives (definition, considerations, types)
- Mechanical aspects of well testing
- Completion fluids and perforation
- Tubing string design
- Packer and downhole tools
- Flow control
- Data acquisition & intelligent completion
- Workover objectives & workover operations
- Workover rigs & tools
- Workover equipment (wire line, snubbing unit, coiled tubing)
- Completion & workover design & execution

Course assignments/ form of examination: Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the Credit point number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:

Completion and Workover:

Sonstiges:

Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 10 a: Economics and Law

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>10 a</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Management, Economics and Law</td>
</tr>
<tr>
<td>Courses:</td>
<td>Energy Law I, Planning and Budgeting</td>
</tr>
<tr>
<td>Term:</td>
<td>2-3</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Oppelt</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Wolkewitz, Dr. Schäfer</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory subjects (PF) of the Deep Geothermal Systems area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact hours/Self-study</td>
<td>CP</td>
</tr>
<tr>
<td>S 6168 Energy Law I</td>
<td>1V</td>
<td>14/46</td>
<td>2</td>
</tr>
<tr>
<td>W 6114 Planning and Budgeting</td>
<td>2V</td>
<td>28/62</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>3V</td>
<td>42/108</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
Acquisition of knowledge of basics of public law and methods of business administration related to oil and gas activities including the main elements of the legal framework, planning tools and decision models / Students develop skills to understand and apply the elements of legal framework, planning tools and decision models

Course outline:
Energy Law I:
- Public law as basis for oil and gas activities – a general introduction
- Typical legal systems for upstream oil and gas activities such as Licenses/Concessions, Production Sharing Agreements and Service Contracts
- Fiscal regimes for oil and gas activities
- Environmental law
- The legal framework of mid- and downstream oil and gas activities
Planning and Budgeting
- Basic Concepts and Definitions
- On Planning
- Vertical (Value Chain), Horizontal and Mixed Types of Business
- Types of Investment
- Evaluation of Prospects and Investments
- Search for and Screening of Investment Opportunities
- Establishing an Investment Portfolio
- From Portfolio to Budget Proposals
- The Capital Budget Decision
- Operational Budget and Realization
- Strategic Investment Plan
- Follow-up and Controlling

Course assignments/ form of examination:
Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score number is to be collected to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:
3. Respective texts of relevant laws and related documents that are provided in
8. Scripts on selected topics that are provided in the Stud.IP

Planning and Budgeting

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 12: Seminar

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>12</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Courses:</td>
<td>Advanced Geothermal Engineering Topics</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>All faculty and scientific staff members in the field of reservoir engineering</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory (PF) subjects of the Deep Geothermal Systems area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6119 Advanced Geothermal Engineering Topics</td>
<td>2S</td>
<td>28/92</td>
<td>4</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special requirements

Learning objectives /Skills: Development the ability to apply theoretical knowledge and state-of-the-art methods and technology for the individual problem solving in the field of petroleum engineering/ Strengthening of skills to report and to present results to an audience of peers

Course outline: Students work on assigned special topics, report and present results obtained via individual efforts within of a regular time of 6-7 weeks.

Course assignments/ form of examination: Soft (pdf) copies of the seminar report, poster and presentation to be uploaded to the Stud.IP seminar directory in due time/ Seminar report, poster, presentation to an audience of peers, faculty and scientific staff members and discussion. The overall seminar grade is evaluated as weighted average affected by 40% of the report grade, 40% of the presentation grade, 10% of the poster grade and 10% of the moderation grade.

Media: • DIN A3 Poster to be posted at a pin-board • MS PowerPoint presentation • White board

Literature: Key literature sources should be provided by the supervisor. Assessment of further relevant literature sources should be carried out by the candidate as part of seminar study

Additional information: Participants are requested to register for the attendance with the seminar directory at the Stud.IP
Module 21: Geothermal Systems

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 14
Name of the module: Geothermal Systems

Courses:
- Enhanced Geothermal Systems
- Geothermal Energy Production Systems

Term: 2-3
Person responsible for the module: Prof. Ganzer
Lecturers: Dr.-Ing. R. Hincapie, NN
Language: English
Course type: Compulsory subjects (PF) of the Deep Geothermal Systems area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6149 Enhanced Geothermal Systems</td>
<td>2V</td>
<td>42/78</td>
<td>4</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W 6150 Geothermal Energy Production Systems</td>
<td>2V</td>
<td>42/78</td>
<td>4</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4V</td>
<td>84/156</td>
<td>8</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
- Acquisition of knowledge of geothermal reservoir characterisation
- Acquisition of theoretical and practical knowledge of reservoir modelling and simulation techniques
- Theoretical and practical understanding of the geothermal production system, from reservoir to point of sale
- Acquisition of knowledge of the different uses of geothermal energy: power generation, heat pumps and direct heating, combined heat and power.

Course outline:
Enhanced Geothermal Systems:
- Physical basis of heat transfer: fundamental terms of heat conduction, heat conduction equations, thermal properties of rocks
- Terrestrial heat flow density: spatial and temporal variations
- Thermal state of the earth's interior: methods of temperature determination (of uppermost crust, at great depths)
- Natural and technical effects to the temperature field of the subsurface, e.g. influence of meteoric water
- Geothermal reservoir types
- Concepts of geothermal systems
- Mathematical foundations of single and multi-phase flow in porous media
- Analytical and numerical methods
- Phase behavior
- Well productivity index
- Recovery factor
- Simulation
- Well Stimulation and engineered geothermal systems

Geothermal Energy Production Systems:
- Geothermal power generating systems: singleflash steam plants; double-flash steam plants; dry-steam plans; binary cycle power plants; advanced and hybrid systems
- Field examples
- Geothermal heat use without involving a power plant or a heat pump
- Geothermal heat pumps
- Use of spent fluids from geothermal power plants for direct use applications in so-called "cascaded" operation

Course assignments/ form of examination: Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the Credit point number.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

<table>
<thead>
<tr>
<th>Literature: Enhanced Geothermal Systems:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. SPE.ORG the eLibrary of SPE.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature: Geothermal Energy Production Systems:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sonstiges:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants are requested to register for the attendance with the course directory at the Stud.IP</td>
</tr>
</tbody>
</table>
Compulsory optional subjects of Reservoir Management area of study
Module 15.1: Petrophysics

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 15.1
Name of the module: Petrophysics
Courses: Petrophysics I
Term: 1
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Weller
Language: English
Course type: Compulsory optional subjects (WPF) of Reservoir Management area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 4021 Petrophysics I</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites
Learning objectives / Skills: Knowledge of geophysical rock properties and their application to the characterization of reservoirs.
Course outline:
- Introduction
 - Petrophysics in Geophysics
 - Classification of rocks
 - Structure and texture
- Pore space properties
 - Pore space, porosity, saturation
 - Tortuosity, constrictivity
 - Internal surface
 - Fractal dimension
- Density
 - Density of different rocks
 - Determination of density in laboratory, in situ and in wells
 - Different kinds of density
- Magnetic Properties
 - Para-, dia-, ferro-, and ferrimagnetism
 - Magnetic properties of minerals and rocks
 - Remanent magnetization
 - The influence of temperature and pressure

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score is required to pass the written exam.
Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional software

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 15.2: Geostatistics

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>15.2</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Geostatistics</td>
</tr>
<tr>
<td>Courses:</td>
<td>Advanced Geostatistics</td>
</tr>
<tr>
<td>Term:</td>
<td>1</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr. Mueller</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Reservoir Management area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact hours/Self-study</td>
<td>CP</td>
</tr>
<tr>
<td>W 4635 Advanced Geostatistics</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of knowledge on the origination, validation, interpretation, uncertainties, spatial extrapolation and interpolation as well as the handling of the geotechnical and the geoscientific data. Students will develop profound skills in the acquisition, evaluation of engineered and the geoscientific data required for the reservoir characterization and simulation.

Course outline:
- Introduction and Basic Concepts;
- Univariate Analysis;
- Measures of Heterogeneity;
- Hypothesis Tests;
- Bivariate Analysis;
- Basics of Geostatistics: Variogramme calculation and interpretation, Kriging;
- Use of Statistics in Petroleum Geology

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional software

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 15.3: Rock Physics

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 15.3
Name of the module: Rock Physics
Courses: Advanced Rock Physics
Term: 1
Person responsible for the module: Prof. Ganzer
Lecturers: Dr. Wegner
Language: English
Course type: Compulsory optional subjects (WPF) of Reservoir Management area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6118 Advanced Rock</td>
<td>2V+1U</td>
<td>42/108</td>
<td>CP 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FK 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MK 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SK 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOK</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
- Acquisition of advanced knowledge in the evaluation of physical properties of reservoir rocks
- Ability to understand and to apply the advanced techniques of reservoir rock characterization

Course outline:
- Review of rock properties and saturation functions
- Special and standard core analysis laboratory tests
- Introduction to the “Digital Rock Technology”
 - Imaging of rocks using CT, micro-CT, FIB, etc.
 - Generation of 3D models of rocks and single phase pore-scale simulation to derive petro physical properties of rocks such as porosity, absolute permeability, NMR, elastic properties, etc.
 - Multiphase pore-scale simulation to derive capillary pressure and relative permeabilities
 - Special topics: Carbonates and unconventional rocks
- Introduction to Microfluidic devices that resemble porous media
 - Micro-models and Micro-fluidics – Micro-model construction, experimental setup, wettability control, etc.
 - Investigation of EOR methods in micro-models that resemble porous media
 - Micro-fluidic measurement devices
- Discussion of advantages and disadvantages of the different characterization methods

Exercises:
- Calculation of permeability and porosity data from laboratory flooding experiments
- Conversion of mico-CT to 3D models and calculation of petrophysical parameters such as porosity, permeability, grain size distribution, pore-size distribution, etc. as well as multiphase flow properties such as relative permeability and capillary pressure using the software packages Matlab, Comsol and GeoDict
- Comparison of laboratory flooding experiments and results obtained by Digital Rocks
- Evaluation of micro-model experiments

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score is required to pass the written exam.

Media:
- Multimedia lecturing tools
- Hard copy of lecture notes to be provided at the beginning of the course.
- Video records of lecture available with the Stud.IP directory of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
- Exercises with application of the GeoDict software in PC Pool

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP.
Module 15.4: Geoinformation Systems

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 15.4
Name of the module: Geoinformation Systems
Courses: Geoinformation Systems
Term: 1
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Busch
Language: English
Course type: Compulsory optional subjects (WPF) of Reservoir Management area of study

Courses	HPW	Workload [h]	CP	FK	MK	SK	SOK
W 6340 Geoinformation Systems | 2V+1U | 42/108 | 5 | 60 | 40 |

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the principles of the Geo-data visualization and special application of the GIS in the oil and gas industry.

Course outline:
- Introduction GIS, what is it?; Definitions; Purpose of GIS; Solving a Problem using GIS; Special Applications from Oil and GAS Industries; Software packages
- Historical development Geo-data visualization, Maps; Maps and measurements; Computerization and GIS-technology
- Geographic Information and Spatial Data Real World Representation; Spatial phenomena; Spatial representation; Topology Time aspects; Spatial data structures; Data types; Reference frames
- Data capture Data input; Data preparation; Data quality
- GIS Functionality Basic maintenance functions; Operation types; Thematic data treatment; Spatial data analyses; Data transformation; Proximity operations Overlay and intersection ; Topological analyses and Network operations; Advanced combined functions; Procedures in integrated Data Analyses
- Visualization (and Mapping)

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min).

Media:
- Multimedia lecturing tools
- Hard copy of lecture notes to be provided at the beginning of the course.
- Video records of lecture available with the Stud.IP directory of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
- Exercises with application of the GIS software

Literature:
1. Graeme F. Bonham-Carter: Geographic Information Systems for Geoscientists: Modelling with GIS.
4. Tor Bernhardsen: Geographical Information Systems.
5. David J. Unwin, David O'Sullivan: Geographic Information Analysis.
7. Laurie Kelly, Michael F. Worboys, Matt Duckham. GIS. A computing perspective.

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 16.1: Data Interpretation

Degree Programme: Petroleum Engineering (M.Sc.)

Module number: 16.1

Name of the module: Data Interpretation

Courses: Applied Seismic Data Interpretation

Term: 2

Person responsible for the module: Prof. Ganzer

Lecturers: Dr. Haugwitz

Language: English

Course type: Compulsory optional subjects (WPF) of Reservoir Management area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 4008 Applied Seismic Data Interpretation</td>
<td>2V+1U</td>
<td>CP</td>
</tr>
<tr>
<td></td>
<td>42/78</td>
<td>FK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOK</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Theoretical knowledge about the propagation of seismic waves in the subsurface, seismic acquisition techniques and tools and main steps of seismic data processing/ Ability to understand and apply the advanced techniques of seismic data acquisition and interpretation

Course outline:
- Elements of solid earth physics;
- Acquisition: Seismic sources and receivers. Recording geometries, Traveltimes of refracted and reflected waves, true and apparent velocities, Moveout- and Normal Moveout-, Average-, RMS-, Stacking-, velocities.
- Processing: Signal to noise ratio, filtering, convolution and correlation, sorting in CMP-(CDP-) geometries (gathers), static corrections, NMO-corrections and stacking; signal-stretch. Zero-offset sections and the exploding reflector model. Elements of seismic migration: Migrator’s equation: ray-theoretical migration, diffractions in stacked sections; focussing diffractions to their origin.
- Elements of Seismic Interpretation: The theoretical (synthetic) seismogram: kinematical and dynamical aspects (traveltimes and amplitudes), vertical incidence, non-zero-offset seismograms, structural interpretation, “thin” -bed analysis; bright-, dim-, flat- spots. Elements of wavelet processing, resolution and recognition, basics of seismostratigraphy.
- Pitfalls in seismic interpretation: “the velocity-problem”& 2D-migration in a 3D-world.

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score is required to pass the written exam.

Media:
- Multimedia lecturing tools
- Hard copy of lecture notes to be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
- Exercises with application of the PETREL software in PC Pool

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 16.2: Model Validation

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 16.2
Name of the module: Model Validation
Courses: Reservoir Model Validation
Term: 2
Person responsible for the module: Prof. Ganzer
Lecturers: Dr. Schulze-Riegert
Language: English
Course type: Compulsory optional subjects (WPF) of Reservoir Management area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h] Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6103 Reservoir Model Validation</td>
<td>2V</td>
<td>28/78</td>
<td>4</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the field of setting up of dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. Ability to validate of dynamic reservoir simulation models as well as to approach the professional solution of real reservoir simulation problems on advanced methodical and systematical way.

Course outline:
- Principles of Model Validation,
- Subsurface Uncertainties,
- Multi-Dimensional Search and Solution Space,
- Foundations of Optimisation Methods;
- History Matching Inverse Problem Statement: Scope of History Matching, Bayesian Optimisation Framework;
- Challenges (Ill-posed problems, non-linearity of the solution space);
- Optimisation Approaches (manual, (semi-)automatic);
- Local and Global Optimisation Methods;
- Application of Optimisation Techniques;
- Model Predictions and Uncertainty Quantification.

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Computer aided exercises using the application of the commercial reservoir modeling software MEPO and ECLIPSE (Schlumberger)
- Hard copy of lecture notes to be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:
7. Further recommended literature is available with the lecture notes

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 16.3: Reservoir Modeling

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>16.3</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Reservoir Modeling</td>
</tr>
<tr>
<td>Courses:</td>
<td>Fractured Reservoir Modeling</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr. Mueller</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Reservoir Management area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 4620 Fractured Reservoir Modeling</td>
<td>2V</td>
<td>28/78</td>
<td>4</td>
<td>60 40</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the field of setting up of geological and dynamic reservoir models, model uncertainties, calibration of flow models, evaluation of forecasting uncertainties/ Ability of setting up and evaluate of fractured reservoir models

Course outline:
- Deformation of reservoir rocks, tectonic styles;
- Classification, types and recording of fractures: Direct and indirect sources of information, mapping of Fracture properties;
- Origin of fractures, Stress field;
- Fracture model data base, data identification, methods of representation of fractures.

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.

Media:
- PowerPoint presentation software and white board
- Computer aided exercises using the application of the commercial geological modeling and reservoir simulation software
- Hard copy of lecture notes will be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP directory of the course.

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP.
Module 17.1: Natural Gas Recovery

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>17.1</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Natural Gas Recovery</td>
</tr>
<tr>
<td>Courses:</td>
<td>Enhanced Natural Gas Recovery</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr. Reitenbach</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Reservoir Management area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6104 Enhanced Natural Gas Recovery</td>
<td>2V</td>
<td>28/78</td>
<td>CP 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FK 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MK 40</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in principles of analysis and engineering computation of gas recovery processes and application of material laws and phase behavior of hydrocarbons

Course outline:
- Fundamentals and Methods of EGR Processes;
- Enhanced Gas Recovery of Conventional Gas Reservoirs;
- Enhanced Natural Gas Recovery by Dense Gas Flooding;
- Unconventional Gas Reservoirs: Tight Gas Formations;
- Coal Bed Methane Recovery;
- Gas Hydrate Recovery and Utilization

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.

Media:
- PowerPoint presentation software and white board
- Hard copy of lecture notes will be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP directory of the course.
- Authentic report materials and handouts

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 17.2: Natural Gas Storage

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>17.2</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Natural Gas Storage</td>
</tr>
<tr>
<td>Courses:</td>
<td>Natural Gas Storage</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr. Reitenbach</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Reservoir Management area of study</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6113 Natural Gas Storage</td>
<td>2V</td>
<td>28/78</td>
<td>CP 40</td>
</tr>
</tbody>
</table>

Workload
- Contact hours/Self-study: 28/78 hours
- CP: 4 hours
- FK: 60 hours
- MK: 40 hours
- SK: 78 hours
- SOK: 28 hours

Prerequisites for attending:
No special prerequisites

Learning objectives / Skills:
Acquisition of advanced knowledge in principles of analysis, application of material laws and fundamentals of phase behavior of hydrocarbons and engineering of natural gas storage processes

Course outline:
- Media for Storage and Operation Principles;
- Fundamentals and definition of terms;
- Gas Storage in Salt Caverns: Geological, Geomechanical and Thermodynamic Conditions and Design of Caverns;
- Operation Fundamentals;
- Characteristics, Optimization Strategies;
- Gas Reservoirs: Reservoir Mechanics, Storage Capacity and Productivity, Gas Mixing;
- Well Design and Completion, Surface Installations;
- Aquifer Storages;
- Field Cases.

Course assignments/ form of examination:
Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.

Media:
- PowerPoint presentation software and white board
- Hard copy of lecture notes will be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP directory of the course.
- Authentic report materials and handouts

Literature:

Additional information:
Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 17.3: Enhanced Production

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>17.3</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Enhanced Production</td>
</tr>
<tr>
<td>Courses:</td>
<td>Enhanced Production</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Oppelt</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr. Lungwitz</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Reservoir Management area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Workload [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6169 Enhanced Production</td>
<td>2V</td>
<td>42/78</td>
<td></td>
<td>4</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Knowledge of methodologies and technologies to enhance hydrocarbon production

Course outline:
- Advanced artificial lift and gas well deliquification
- Multiphase pumps and wet gas compressors
- Subsea boosting
- Well Stimulation
- Real-time flow monitoring and control
- Production logging

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional software

Literature:
2. Authentic training materials of the Schlumberger Co.

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 18.1: Energy Law

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>18.1</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Energy Law</td>
</tr>
<tr>
<td>Courses:</td>
<td>Energy Law II</td>
</tr>
<tr>
<td>Term:</td>
<td>1/3</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Oppelt</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Wolkewitz</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Reservoir Management area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6115 Energy Law II</td>
<td>2V</td>
<td>28/62</td>
<td></td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Knowledge about the main contractual arrangements necessary along the value chain of oil and gas activities including the relevant regulatory framework

Course outline:
- Joint Operation Agreements as contractual arrangement within a consortium of companies
- Drilling Contracts and related agreements for oil and gas subsurface activities
- Engineering Procurement and Construction Contracts as main legal feature of oil and gas surface activities
- Transportation and Processing Agreements upstream
- Third party access and regulation in the midstream part of the value chain
- Gas Sales Agreements and energy supply contracts

Course assignments/ form of examination: Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:
4. Respective internationally relevant Model Agreements and Contracts that are provided in the Stud.IP
5. Respective texts of relevant laws and related documents that are provided in the Stud.IP

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 18.2: Health, Safety and Environmental Management

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>18.2</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Health, Safety and Environmental Management</td>
</tr>
<tr>
<td>Courses:</td>
<td>Health, Safety and Environmental Management</td>
</tr>
<tr>
<td>Term:</td>
<td>3</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Oppelt</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dipl.-Ing. Söntgerath</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Reservoir Management area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact hours/Self-study</td>
<td>CP</td>
</tr>
<tr>
<td>W 6135 Health, Safety and Environmental Management</td>
<td>1V</td>
<td>14/46</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of Knowledge on Impact of Health Safety and Environment issues on oil and gas activities and ways to deal with it.

Course outline:
- Organisation of safety and loss management
- Risk management
- Machinery and equipment safety
- Kyoto Protocol and beyond
- Clear Air for Europe (CAFE)
- Dangerous substances
- Waste and water management
- Offshore Regulations
- Audit - a new tool?
- Biodiversity - who cares?

Course assignments/ form of examination: Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:
- Lecture Notes
- Handouts and authentic materials based on the EU and German national health, environmental and occupational protection laws

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Compulsory optional subjects of Drilling & Production area of study
Module 19.1: Energy Law

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 19.1
Name of the module: Energy Law
Courses: Energy Law II
Term: 1/3
Person responsible for the module: Prof. Oppelt
Lecturers: Prof. Wolkewitz
Language: English
Course type: Compulsory optional subjects (WPF) of Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6115 Energy Law II</td>
<td>2V</td>
<td>Contact hours/Self-study 28/62</td>
<td>CP 60</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Knowledge about the main contractual arrangements necessary along the value chain of oil and gas activities including the relevant regulatory framework

Course outline:
- Joint Operation Agreements as contractual arrangement within a consortium of companies
- Drilling Contracts and related agreements for oil and gas subsurface activities
- Engineering Procurement and Construction Contracts as main legal feature of oil and gas surface activities
- Transportation and Processing Agreements upstream
- Third party access and regulation in the midstream part of the value chain
- Gas Sales Agreements and energy supply contracts

Course assignments/ form of examination: Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:
4. Respective internationally relevant Model Agreements and Contracts that are provided in the Stud.IP
5. Respective texts of relevant laws and related documents that are provided in the Stud.IP

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.2: Materials Engineering

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering (M.Sc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>19.2</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>Courses:</td>
<td>Materials Engineering and Corrosion</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Oppelt</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Neubert</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Drilling & Production area of study</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6117 Materials Engineering and Corrosion</td>
<td>2V</td>
<td>28/62</td>
<td>CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOK</td>
</tr>
</tbody>
</table>

Prerequisites for attending:
No special prerequisites

Learning objectives / Skills:
Ability to employ appropriate materials and to design petroleum equipment and facilities

Course outline:
- Petroleum Fluids & Corrosion (Oil, Gas, Water, Emulsions, Corrosion Mechanism/Forms);
- Materials and corrosion
- Materials selection
- Corrosion inhibition
- Hydrogen corrosion
- Petroleum fluid and corrosion testing
- Cathodic corrosion protection
- Other protection methods

Course assignments/ form of examination:
Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory

Literature:
Authentic lecturing materials and handouts

Additional information:
Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.3: Fluid Mechanics

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 19.3
Name of the module: Fluid Mechanics
Courses: Fluid Mechanics
Term: 1/3
Person responsible for the module: Prof. Brenner
Lecturers: Prof. Brenner
Language: English
Course type: Compulsory optional subjects (WPF) of Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact hours/Self-study</td>
<td>CP</td>
</tr>
<tr>
<td>W 8040 Fluid Mechanics</td>
<td>2V</td>
<td>28/62</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites
Learning objectives / Skills: Comprehension of principles of mathematical modeling and experimental techniques to describe and to investigate fluid flow processes

Course outline:
- Properties of fluids and flows
- Hydrostatics, aerostatics
- Kinematics and dynamics of inviscid fluids → Bernoulli equation
- Conservation equations of viscous fluids the Euler Equation and applications to laminar flow
- Conservation equations of viscous fluids the Navier-Stokes equation and applications to laminar flows
- Dimensional analysis
- Boundary layer theory
- Turbulent flows
- Experimental and measurement techniques

Course assignments/ form of examination: Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory

Literature:
Authentic lecturing materials and handouts

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.4: Offshore Production and Structures

Degree Programme: Petroleum Engineering (M.Sc.)

Module number: 19.4

Name of the module: Offshore Production and Structures

Courses: Offshore Production and Structures

Term: 1/3

Person responsible for the module: Prof. Oppelt

Lecturers: Prof. Reichetseder

Language: English

Course type: Compulsory optional subjects (WPF) of Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6124 Offshore Production and Structures</td>
<td>2V</td>
<td>28/62</td>
<td></td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Comprehension of principles and methods to evaluate and to design of the offshore production systems. Students develop skills to develop concepts and to apply the principles of the evaluation and design the elements of the offshore production systems.

Course outline:
- International Offshore Activities and Trends
- Design Elements (Wind, Waves, Current, Ice Forces)
- Ocean Floor Surveying, Platform Foundation
- Design of Fixed Platform Systems (Piles, Gravity)
- Floating Systems Dry Tree (TLP, SPAR, etc)
- Floating Systems Wet Tree (FPSO, Semi, etc)
- Subsea Completions
- Logistics
- Offshore Pipelines
- Actual Development Projects and Case Studies
- Offshore Drilling overview: floating drilling units and special equipment, jack-ups, activities

Course assignments/ form of examination: Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.5: Numerical Reservoir Simulation

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6102 Numerical Reservoir Simulation</td>
<td>2V+1U</td>
<td>42/108</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills:
- Acquisition of advanced knowledge in the field of setting up of dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. / Ability of setting up and evaluate dynamic reservoir simulation models as well as to approach the professional solution of real reservoir modelling and simulation problems on advanced methodical and systematical way.

Course outline:
- History and classification of reservoir simulators;
- Review of fluid properties for simulation - black-oil properties, equation of state; modeling rock properties and saturation functions - porosity, permeability, compressibility, relative permeability, capillary pressure, compaction, correlations;
- general purpose formulation and discretization methods used for black-oil and EOS compositional simulators;
- Gridding: structured and unstructured gridding approaches, Cartesian grids, corner point grids, Voronoi grids;
- Modelling structural elements in simulation - vertical and sloping faults, channels, etc.;
- Representing wells in the reservoir simulation model; Compositional reservoir simulation;
- Simulation of fractured reservoirs - numerical model, matrix-fracture exchange, recovery processes;
- Upgridding and upscaling;
- History matching

Course assignments/ form of examination: Project work Assignments/ Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- Computer aided exercises using the application of the commercial reservoir simulation software Matlab and CMG.
- Hard copy of lecture notes to be provided at the beginning of the course.
- Video records of lecture available with the Stud.IP directory of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.6: Natural Gas Storage

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6113 Natural Gas Storage</td>
<td>2V</td>
<td>28/78</td>
<td>4</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in principles of analysis, application of material laws and fundamentals of phase behavior of hydrocarbons and engineering of natural gas storage processes

Course outline:
- Media for storage and operation principles;
- Fundamentals and definition of terms;
- Gas storage in salt caverns: geological, geomechanical and thermodynamic conditions and design of caverns;
- Operation Fundamentals;
- Characteristics and optimization strategies;
- Gas reservoirs: reservoir mechanics, storage capacity and productivity, gas mixing;
- Well design and completion, surface installations;
- Aquifer storages;
- Field cases.

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.

Media:
- PowerPoint presentation software and white board
- Hard copy of lecture notes will be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP directory of the course.
- Authentic report materials and handouts

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.7: Geological Modeling

Degree Programme: Petroleum Engineering
Module number: 19.7
Name of the module: Geological Modeling
Courses: Geological Modeling
Term: 1/3
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Groß, Dipl.-Ing. Schatzmann
Language: English
Course type: Compulsory optional subjects (WPF) of Drilling & Production area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 4820 Geological Modeling</td>
<td>2V+1U</td>
<td>42/108</td>
<td>CP 5, FK 50, MK 30, SK 20</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the field of setting up of geological models / Ability of setting up and evaluate geological models on advanced methodical and systematical way.

Course outline:
Geological Modelling:
a) Theoretical part: Interpretation and basics to reconstruct deposition areas (depositional systems and facies models) with regards to set up 3D geological models:
- Principles of generation of 3-D geological models
- Sedimentary facies
- Facial model
- Facial sequences and stratigraphy, Sedimentary structures, Well logging and facies
- Depositional environments: Terrestrial environments;
- Fluvial systems
- Marginal marines: Deltaic systems
- Example cases relevant to the petroleum geology

b) Practical part: Introduction to Petrel software package (well correlation, static geological model)

Course assignments/ form of examination: Continuous assessment and report/ Written (90 min) or oral exam (30-40 min). The mark consists of a) theoretical part -> final exam (written) and b) practical part -> continuous assessment and report

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Computer aided exercises using the application of the commercial reservoir modeling software PETREL (Schlumberger)
- Hard copy of lecture notes to be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.8: Applied Well Test Analysis

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>19.8</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Applied Well Test Analysis</td>
</tr>
<tr>
<td>Courses:</td>
<td>Applied Well Test Analysis</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Ostrowski</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Drilling & Production area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6109 Applied Well Test Analysis</td>
<td>2V+1U</td>
<td>42/108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: The MSc candidates should acquire the knowledge in the origination, validation, interpretation and uncertainty of engineering and geo-scientific data as well as the ability to handle, to interpolate and to extrapolate it. The students develop skills to acquire and to evaluate data required for reservoir characterization and simulation studies.

Course outline:
- Objectives of Well Testing
- Downhole and Surface Equipment
- Well Test Principles, Reservoir Models, Inner & Outer Boundary Conditions
- Single Well Test Analysis: Drawdown, Build-Up (DST) Pulse Test, Minifrac Testing, Layered Reservoir, Vertical Interference and Horizontal Well Test
- Multiple Well Test Analyses: Interference Test, Pulse Interference Test; Gas Well Test Analysis Interpretation Methodology.

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation with the Stud.IP directory
- Computer aided exercises by using professional well test analysis and interpretation software

Literature:
2. Earlougher R. C.: Advances in Well Test Analysis, Monograph Series, SPE, Dallas 1977
3. Horn, D. R.: Pressure Analysis Methods, Reprint Series, SPE, Dallas 1967

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 19.9: Enhanced Oil Recovery

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>19.9</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>Courses:</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>Term:</td>
<td>1/3</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Drilling & Production area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6103 Enhanced Oil Recovery</td>
<td>2V+1U</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Prerequisites for attending:** No special prerequisites
- **Learning objectives / Skills:** Acquisition of advanced knowledge in the analysis and computation methods of the processes and mechanisms of the oil recovery, production and storage. Skills in the application of the fundamentals of material and phase behavior of hydrocarbons will be consolidated and established on an advanced level.

- **Course outline:**
 - Basics of Waterflooding;
 - Chemical Flooding;
 - Gas Flooding;
 - Steam Flooding;
 - Well Treatment

- **Course assignments/ form of examination:** Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

- **Media:**
 - Multimedia lecturing tools
 - PowerPoint presentation software and white board
 - Hard copy of lecture notes to be provided at the beginning of the course
 - A soft pdf copy of PowerPoint presentation with the Stud.IP directory
 - Computer aided exercises by using professional software

- **Literature:**

- **Additional information:** Participants are requested to register for the attendance with the course directory at the Stud.IP.
Module 19.10: Geoinformation Systems

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 19.10
Name of the module: Geoinformation Systems
Courses: Geoinformation Systems
Term: 1
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Busch
Language: English
Course type: Compulsory optional subjects (WPF) of Reservoir Management area of study

Course Outline
- Introduction GIS, what is it?; Definitions; Purpose of GIS; Solving a Problem using GIS; Special Applications from Oil and GAS Industries; Software packages
- Historical development Geo-data visualization, Maps; Maps and measurements; Computerization and GIS-technology
- Geographic Information and Spatial Data Real World Representation; Spatial phenomena; Spatial representation; Topology Time aspects; Spatial data structures; Data types; Reference frames
- Data capture Data input; Data preparation; Data quality
- GIS Functionality Basic maintenance functions; Operation types; Thematic data treatment; Spatial data analyses; Data transformation; Proximity operations Overlay and intersection; Topological analyses and Network operations; Advanced combined functions; Procedures in integrated Data Analyses
- Visualization (and Mapping)

Course Assignments/Form of Examination
- Module exam. Written (90 min) or oral exam (30-40 min).

Prerequisites for Attending
- No special prerequisites

Learning Objectives/Skills
- Acquisition of advanced knowledge in the principles of the Geo-data visualization and special application of the GIS in the oil and gas industry.

Workload and Skills

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6340 Geoinformation Systems</td>
<td>2V+1U</td>
<td>42/108</td>
<td></td>
<td>5</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literature
1. Graeme F. Bonham-Carter: Geographic Information Systems for Geoscientists: Modelling with GIS.
4. Tor Bernhardsen: Geographical Information Systems.
5. David J. Unwin, David O'Sullivan: Geographic Information Analysis.
7. Laurie Kelly, Michael F. Worboys, Matt Duckham. GIS. A computing perspective.

Additional Information
- Participants are requested to register for the attendance with the course directory at the Stud.IP.
Compulsory optional subjects of Deep Geothermal Systems area of study
Module 20.1: Energy Law

Degree Programme: Petroleum Engineering (M.Sc.)

Module number: 20.1

Name of the module: Energy Law

Courses: Energy Law II

Term: 1/3

Person responsible for the module: Prof. Oppelt

Lecturers: Prof. Wolkewitz

Language: English

Course type: Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6115 Energy Law II</td>
<td>2V</td>
<td>28/62</td>
<td></td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Knowledge about the main contractual arrangements necessary along the value chain of oil and gas activities including the relevant regulatory framework

Course outline:
- Joint Operation Agreements as contractual arrangement within a consortium of companies
- Drilling Contracts and related agreements for oil and gas subsurface activities
- Engineering Procurement and Construction Contracts as main legal feature of oil and gas surface activities
- Transportation and Processing Agreements upstream
- Third party access and regulation in the midstream part of the value chain
- Gas Sales Agreements and energy supply contracts

Course assignments/ form of examination: Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:
9. Respective internationally relevant Model Agreements and Contracts that are provided in the Stud.IP
10. Respective texts of relevant laws and related documents that are provided in the Stud.IP

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 20.2: Fluid Mechanics

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 20.3
Name of the module: Fluid Mechanics
Courses: Fluid Mechanics
Term: 1/3
Person responsible for the module: Prof. Brenner
Lecturers: Prof. Brenner
Language: English
Course type: Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 8040 Fluid Mechanics</td>
<td>28/62</td>
<td>CP 60</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites
Learning objectives / Skills: Comprehension of principles of mathematical modeling and experimental techniques to describe and to investigate fluid flow processes

Course outline:
- Properties of fluids and flows
- Hydrostatics, aerostatics
- Kinematics and dynamics of inviscid fluids → Bernoulli equation
- Conservation equations of viscous fluids the Euler Equation and applications to laminar flow
- Conservation equations of viscous fluids the Navier-Stokes equation and applications to laminar flows
- Dimensional analysis
- Boundary layer theory
- Turbulent flows
- Experimental and measurement techniques

Course assignments/ form of examination:
Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory

Literature: Authentic lecturing materials and handouts
Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 20.3: Numerical Reservoir Simulation

Degree Programme: Petroleum Engineering
Module number: 20.3
Name of the module: Numerical Reservoir Simulation
Courses: Numerical Reservoir Simulation
Term: 2
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Ganzer, Prof. Bremeier
Language: English
Course type: Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6102 Numerical Reservoir Simulation</td>
<td>2V+1U 42/108</td>
<td>CP 5, FK 50, MK 30, SK 20</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the field of setting up of dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. Ability of setting up and evaluate dynamic reservoir simulation models as well as to approach the professional solution of real reservoir modelling and simulation problems on advanced methodical and systematical way.

Course outline:
- History and classification of reservoir simulators;
- Review of fluid properties for simulation - black-oil properties, equation of state; modeling rock properties and saturation functions - porosity, permeability, compressibility, relative permeability, capillary pressure, compaction, correlations;
- general purpose formulation and discretization methods used for black-oil and EOS compositional simulators;
- Gridding: structured and unstructured gridding approaches, Cartesian grids, corner point grids, Voronoi grids;
- Modelling structural elements in simulation - vertical and sloping faults, channels, etc.;
- Representing wells in the reservoir simulation model; Compositional reservoir simulation;
- Simulation of fractured reservoirs - numerical model, matrix-fracture exchange, recovery processes;
- Upgridding and upscaling;
- History matching

Course assignments/ form of examination: Project work Assignments/ Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- Computer aided exercises using the application of the commercial reservoir simulation software Matlab and CMG.
- Hard copy of lecture notes to be provided at the beginning of the course.
- Video records of lecture available with the Stud.IP directory of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 20.4: Geological Modeling

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>20.4</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Geological Modeling</td>
</tr>
<tr>
<td>Courses:</td>
<td>Geological Modeling</td>
</tr>
<tr>
<td>Term:</td>
<td>1/3</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Prof. Groß, Dipl.-Ing. Schatzmann</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 4820 Geological Modeling</td>
<td>2V+1U</td>
<td>42/108</td>
<td></td>
<td>5</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites for attending:</th>
<th>No special prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning objectives / Skills:</td>
<td>Acquisition of advanced knowledge in the field of setting up of geological models / Ability of setting up and evaluate geological models on advanced methodical and systematical way.</td>
</tr>
</tbody>
</table>

Course outline:

Geological Modelling:

a) Theoretical part: Interpretation and basics to reconstruct deposition areas (depositional systems and facies models) with regards to set up 3D geological models:
- Principles of generation of 3-D geological models
- Sedimentary facies
- Facial model
- Facial sequences and stratigraphy, Sedimentary structures, Well logging and facies
- Depositional environments: Terrestrial environments;
- Fluvial systems
- Marginal marines: Deltaic systems
- Example cases relevant to the petroleum geology

b) Practical part: Introduction to Petrel software package (well correlation, static geological model)

| Course assignments/ form of examination: | Continuous assessment and report/ Written (90 min) or oral exam (30-40 min). The mark consists of a) theoretical part -> final exam (written) and b) practical part -> continuous assessment and report |

Media:

- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Computer aided exercises using the application of the commercial reservoir modeling software PETREL (Schlumberger)
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:

Additional information:

Participants are requested to register for the attendance with the course directory at the Stud.IP.
Module 20.5: Hydrogeology for the Geothermal Energy Production

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>20.5</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Hydrogeology for the Geothermal Energy Production</td>
</tr>
<tr>
<td>Courses:</td>
<td>Hydrogeology for the Geothermal Energy Production</td>
</tr>
<tr>
<td>Term:</td>
<td>2</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr. C. Hansen</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 6145 Hydrogeology for the Geothermal Energy Production</td>
<td>1V+1Ü</td>
<td>28/92</td>
<td>3</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending:
No special prerequisites

Learning objectives / Skills:
- Acquisition of knowledge in hydrological relevant tasks in the development and processes of geothermal reservoirs

Course outline:
- Introduction to hydrogeology and water cycle,
- Hydrological rock properties, water flow in porous and fractures aquifers,
- Darcy’s law and groundwater flow equation, groundwater modelling with MODFLOW,
- Introduction to hydrochemistry, water composition: major, minor and trace elements, Sampling techniques, application of tracer, water pollutants,
- Hydro-chemical characterisation of groundwater levels,
- Thermodynamic fundamentals for hydro-geochemical modelling, training on the software PHREEQC, solubility of minerals, scaling in geothermal facilities, thermodynamic databases, introduction of the software PHAST.

Course assignments/ form of examination:
Written (90 min) or oral exam (30-40 min).

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:

Additional information:
Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 20.6: Geothermal Geology

Degree Programme: Petroleum Engineering
Module number: 20.6
Name of the module: Geothermal Geology
Courses: Geothermal Geology
Term: 1-3
Person responsible for the module: Prof. Ganzer
Lecturers: Dr. M. Dussel
Language: English
Course type: Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 4660 Geothermal Geology</td>
<td>1V+1Ü</td>
<td>28/92 Contact hours/Self-study</td>
<td>4</td>
</tr>
</tbody>
</table>

Skills: CP FK MK SK SOK

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: A clear understanding of the different types of geothermal resources, how they can be found and in which geological settings.

Course outline:
- Description of a comprehensive range of Geothermal Play Types in terms of generic conceptual models of geological and tectonic settings in which geothermal systems might naturally develop or be engineered around the world.
- Terminology and definitions for a classification framework for Geothermal Potential (resource/reserve).

Course assignments/ form of examination: Written (90 min) or oral exam (30-40 min).

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 20.7: Fossil & Renewable Energy

<table>
<thead>
<tr>
<th>Degree Programme:</th>
<th>Petroleum Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module number:</td>
<td>20.7</td>
</tr>
<tr>
<td>Name of the module:</td>
<td>Fossil & Renewable Energy</td>
</tr>
<tr>
<td>Courses:</td>
<td>Fossil & Renewable Energy</td>
</tr>
<tr>
<td>Term:</td>
<td>1-3</td>
</tr>
<tr>
<td>Person responsible for the module:</td>
<td>Prof. Ganzer</td>
</tr>
<tr>
<td>Lecturers:</td>
<td>Dr. Buddenberg</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Course type:</td>
<td>Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>Contact hours/Self-study</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 8831 Fossil & Renewable Energy</td>
<td>2V+1Ü</td>
<td>42/108</td>
<td>5</td>
<td>60</td>
<td>35</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: A clear understanding of the different types of fossil and renewable resources, how they can be found and in which geological settings.

Course outline:
- Basics of energy: definitions physical, technical and economic fundamentals
- Fossil (and nuclear) Resources
- Renewable Resources
- Energy scenarios

Course assignments/ form of examination: Written (90 min) or oral exam (30-40 min).

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.

Literature:

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 20.8: Health, Safety and Environmental Management

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 20.8
Name of the module: Health, Safety and Environmental Management
Courses: Health, Safety and Environmental Management
Term: 3
Person responsible for the module: Prof. Oppelt
Lecturers: Dipl.-Ing. Söntgerath
Language: English
Course type: Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

<table>
<thead>
<tr>
<th>Courses</th>
<th>HPW</th>
<th>Workload [h]</th>
<th>CP</th>
<th>FK</th>
<th>MK</th>
<th>SK</th>
<th>SOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 6135 Health, Safety and Environmental Management</td>
<td>1V</td>
<td>14/46</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Prerequisites for attending: No special prerequisites
Learning objectives / Skills: Acquisition of knowledge on impact of health safety and environment issues on oil and gas activities and ways to deal with it.

Course outline:
- Organisation of Safety and Loss Management
- Risk and its Management
- Machinery and Equipment Safety
- Kyoto Protocol and beyond
- Clear Air for Europe (CAFE)
- Dangerous Substances
- Waste and water Management
- Offshore Regulations
- Audit - a new tool?
- Biodiversity - who cares?

Course assignments/ form of examination: Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.

Media:
- Multimedia lecturing tools
- PowerPoint presentation software and white board
- Hard copy of lecture notes to be provided at the beginning of the course
- A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
- Video records of lectures available with the Stud.IP course directory

Literature:
- Lecture Notes
- Handouts and authentic materials based on the EU and German national health, environmental and occupational protection laws

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
Module 20.9: Geoinformation Systems

Degree Programme: Petroleum Engineering (M.Sc.)
Module number: 20.9
Name of the module: Geoinformation Systems
Courses: Geoinformation Systems
Term: 1
Person responsible for the module: Prof. Ganzer
Lecturers: Prof. Busch
Language: English
Course type: Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

Courses	Workload [h]	Skills
 | HPW | Contact hours/Self-study | CP | FK | MK | SK | SOK |
W 6340 Geoinformation Systems | 2V+1U | 42/108 | 5 | 60 | 40 |

Prerequisites for attending: No special prerequisites

Learning objectives / Skills: Acquisition of advanced knowledge in the principles of the Geo-data visualization and special application of the GIS in the oil and gas industry.

Course outline:
- Introduction GIS, what is it?; Definitions; Purpose of GIS; Solving a Problem using GIS; Special Applications from Oil and GAS Industries; Software packages
- Historical development Geo-data visualization, Maps; Maps and measurements; Computerization and GIS-technology
- Geographic Information and Spatial Data Real World Representation; Spatial phenomena; Spatial representation; Topology Time aspects; Spatial data structures; Data types; Reference frames
- Data capture Data input; Data preparation; Data quality
- GIS Functionality Basic maintenance functions; Operation types; Thematic data treatment; Spatial data analyses; Data transformation; Proximity operations Overlay and intersection; Topological analyses and Network operations; Advanced combined functions; Procedures in integrated Data Analyses
- Visualization (and Mapping)

Course assignments/ form of examination: Module exam. Written (90 min) or oral exam (30-40 min).

Media:
- Multimedia lecturing tools
- Hard copy of lecture notes to be provided at the beginning of the course.
- Video records of lecture available with the Stud.IP directory of the course.
- A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
- Exercises with application of the GIS software

Literature:
1. Graeme F. Bonham-Carter: Geographic Information Systems for Geoscientists: Modelling with GIS.
4. Tor Bernhardsen: Geographical Information Systems.
5. David J. Unwin, David O'Sullivan: Geographic Information Analysis.
7. Laurie Kelly, Michael F. Worboys, Matt Duckham. GIS. A computing perspective.

Additional information: Participants are requested to register for the attendance with the course directory at the Stud.IP
List of Abbreviations

Workload units:
- **HPW**: Hours per week
- **CP**: ECTS Credit Point

Course type:
- **(PF)**: Compulsory subject
- **(WPF)**: Compulsory optional subject
- **(WF)**: Elective (additional exam)

Teaching form:
- **V**: Lecture
- **Ü**: Exercise
- **V + Ü**: Lecture and exercise
- **P**: Practical training
- **S**: Seminar

Type of Exam:
- **(K)**: Written exam
- **(M)**: Oral exam
- **(Th)**: Term paper
- **(Ab)**: Master thesis + Colloquium
- **(SL)**: Seminar paper + Presentation

Skills:
- **FK**: Professional skills
- **MK**: Technical skills
- **SK**: System expertise
- **SOK**: Social skills